Cargando…
GPhenoVision: A Ground Mobile System with Multi-modal Imaging for Field-Based High Throughput Phenotyping of Cotton
Imaging sensors can extend phenotyping capability, but they require a system to handle high-volume data. The overall goal of this study was to develop and evaluate a field-based high throughput phenotyping system accommodating high-resolution imagers. The system consisted of a high-clearance tractor...
Autores principales: | Jiang, Yu, Li, Changying, Robertson, Jon S., Sun, Shangpeng, Xu, Rui, Paterson, Andrew H. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5775337/ https://www.ncbi.nlm.nih.gov/pubmed/29352136 http://dx.doi.org/10.1038/s41598-018-19142-2 |
Ejemplares similares
-
In-field High Throughput Phenotyping and Cotton Plant Growth Analysis Using LiDAR
por: Sun, Shangpeng, et al.
Publicado: (2018) -
DeepFlower: a deep learning-based approach to characterize flowering patterns of cotton plants in the field
por: Jiang, Yu, et al.
Publicado: (2020) -
Quantitative Analysis of Cotton Canopy Size in Field Conditions Using a Consumer-Grade RGB-D Camera
por: Jiang, Yu, et al.
Publicado: (2018) -
Aerial Images and Convolutional Neural Network for Cotton Bloom Detection
por: Xu, Rui, et al.
Publicado: (2018) -
A Review of High-Throughput Field Phenotyping Systems: Focusing on Ground Robots
por: Xu, Rui, et al.
Publicado: (2022)