Cargando…
In Silico Screening-Level Prioritization of 8468 Chemicals Produced in OECD Countries to Identify Potential Planetary Boundary Threats
Legislation such as the Stockholm Convention and REACH aim to identify and regulate the production and use of chemicals that qualify as persistent organic pollutants (POPs) and very persistent and very bioaccumulative (vPvB) chemicals, respectively. Recently, a series of studies on planetary boundar...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer US
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5775374/ https://www.ncbi.nlm.nih.gov/pubmed/29285590 http://dx.doi.org/10.1007/s00128-017-2253-9 |
Sumario: | Legislation such as the Stockholm Convention and REACH aim to identify and regulate the production and use of chemicals that qualify as persistent organic pollutants (POPs) and very persistent and very bioaccumulative (vPvB) chemicals, respectively. Recently, a series of studies on planetary boundary threats proposed seven chemical hazard profiles that are distinct from the POP and vPvB profiles. We previously defined two exposure-based hazard profiles; airborne persistent contaminants (APCs) and waterborne persistent contaminants (WPCs) that correspond to two profiles of chemicals that are planetary boundary threats. Here, we extend our method to screen a database of chemicals consisting of 8648 substances produced within the OECD countries. We propose a new scoring scheme to disentangle the POP, vPvB, APC and WPC profiles by focusing on the spatial range of exposure potential, discuss the relationship between high exposure hazard and elemental composition of chemicals, and identify chemicals with high exposure hazard potential. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (10.1007/s00128-017-2253-9) contains supplementary material, which is available to authorized users. |
---|