Cargando…

The histone code reader Spin1 controls skeletal muscle development

While several studies correlated increased expression of the histone code reader Spin1 with tumor formation or growth, little is known about physiological functions of the protein. We generated Spin1(M5) mice with ablation of Spin1 in myoblast precursors using the Myf5-Cre deleter strain. Most Spin1...

Descripción completa

Detalles Bibliográficos
Autores principales: Greschik, Holger, Duteil, Delphine, Messaddeq, Nadia, Willmann, Dominica, Arrigoni, Laura, Sum, Manuela, Jung, Manfred, Metzger, Daniel, Manke, Thomas, Günther, Thomas, Schüle, Roland
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5775400/
https://www.ncbi.nlm.nih.gov/pubmed/29168801
http://dx.doi.org/10.1038/cddis.2017.468
_version_ 1783293898884382720
author Greschik, Holger
Duteil, Delphine
Messaddeq, Nadia
Willmann, Dominica
Arrigoni, Laura
Sum, Manuela
Jung, Manfred
Metzger, Daniel
Manke, Thomas
Günther, Thomas
Schüle, Roland
author_facet Greschik, Holger
Duteil, Delphine
Messaddeq, Nadia
Willmann, Dominica
Arrigoni, Laura
Sum, Manuela
Jung, Manfred
Metzger, Daniel
Manke, Thomas
Günther, Thomas
Schüle, Roland
author_sort Greschik, Holger
collection PubMed
description While several studies correlated increased expression of the histone code reader Spin1 with tumor formation or growth, little is known about physiological functions of the protein. We generated Spin1(M5) mice with ablation of Spin1 in myoblast precursors using the Myf5-Cre deleter strain. Most Spin1(M5) mice die shortly after birth displaying severe sarcomere disorganization and necrosis. Surviving Spin1(M5) mice are growth-retarded and exhibit the most prominent defects in soleus, tibialis anterior, and diaphragm muscle. Transcriptome analyses of limb muscle at embryonic day (E) 15.5, E16.5, and at three weeks of age provided evidence for aberrant fetal myogenesis and identified deregulated skeletal muscle (SkM) functional networks. Determination of genome-wide chromatin occupancy in primary myoblast revealed direct Spin1 target genes and suggested that deregulated basic helix-loop-helix transcription factor networks account for developmental defects in Spin1(M5) fetuses. Furthermore, correlating histological and transcriptome analyses, we show that aberrant expression of titin-associated proteins, abnormal glycogen metabolism, and neuromuscular junction defects contribute to SkM pathology in Spin1(M5) mice. Together, we describe the first example of a histone code reader controlling SkM development in mice, which hints at Spin1 as a potential player in human SkM disease.
format Online
Article
Text
id pubmed-5775400
institution National Center for Biotechnology Information
language English
publishDate 2017
publisher Nature Publishing Group
record_format MEDLINE/PubMed
spelling pubmed-57754002018-01-23 The histone code reader Spin1 controls skeletal muscle development Greschik, Holger Duteil, Delphine Messaddeq, Nadia Willmann, Dominica Arrigoni, Laura Sum, Manuela Jung, Manfred Metzger, Daniel Manke, Thomas Günther, Thomas Schüle, Roland Cell Death Dis Original Article While several studies correlated increased expression of the histone code reader Spin1 with tumor formation or growth, little is known about physiological functions of the protein. We generated Spin1(M5) mice with ablation of Spin1 in myoblast precursors using the Myf5-Cre deleter strain. Most Spin1(M5) mice die shortly after birth displaying severe sarcomere disorganization and necrosis. Surviving Spin1(M5) mice are growth-retarded and exhibit the most prominent defects in soleus, tibialis anterior, and diaphragm muscle. Transcriptome analyses of limb muscle at embryonic day (E) 15.5, E16.5, and at three weeks of age provided evidence for aberrant fetal myogenesis and identified deregulated skeletal muscle (SkM) functional networks. Determination of genome-wide chromatin occupancy in primary myoblast revealed direct Spin1 target genes and suggested that deregulated basic helix-loop-helix transcription factor networks account for developmental defects in Spin1(M5) fetuses. Furthermore, correlating histological and transcriptome analyses, we show that aberrant expression of titin-associated proteins, abnormal glycogen metabolism, and neuromuscular junction defects contribute to SkM pathology in Spin1(M5) mice. Together, we describe the first example of a histone code reader controlling SkM development in mice, which hints at Spin1 as a potential player in human SkM disease. Nature Publishing Group 2017-11 2017-11-23 /pmc/articles/PMC5775400/ /pubmed/29168801 http://dx.doi.org/10.1038/cddis.2017.468 Text en Copyright © 2017 The Author(s) http://creativecommons.org/licenses/by/4.0/ Cell Death and Disease is an open-access journal published by Nature Publishing Group. This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/
spellingShingle Original Article
Greschik, Holger
Duteil, Delphine
Messaddeq, Nadia
Willmann, Dominica
Arrigoni, Laura
Sum, Manuela
Jung, Manfred
Metzger, Daniel
Manke, Thomas
Günther, Thomas
Schüle, Roland
The histone code reader Spin1 controls skeletal muscle development
title The histone code reader Spin1 controls skeletal muscle development
title_full The histone code reader Spin1 controls skeletal muscle development
title_fullStr The histone code reader Spin1 controls skeletal muscle development
title_full_unstemmed The histone code reader Spin1 controls skeletal muscle development
title_short The histone code reader Spin1 controls skeletal muscle development
title_sort histone code reader spin1 controls skeletal muscle development
topic Original Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5775400/
https://www.ncbi.nlm.nih.gov/pubmed/29168801
http://dx.doi.org/10.1038/cddis.2017.468
work_keys_str_mv AT greschikholger thehistonecodereaderspin1controlsskeletalmuscledevelopment
AT duteildelphine thehistonecodereaderspin1controlsskeletalmuscledevelopment
AT messaddeqnadia thehistonecodereaderspin1controlsskeletalmuscledevelopment
AT willmanndominica thehistonecodereaderspin1controlsskeletalmuscledevelopment
AT arrigonilaura thehistonecodereaderspin1controlsskeletalmuscledevelopment
AT summanuela thehistonecodereaderspin1controlsskeletalmuscledevelopment
AT jungmanfred thehistonecodereaderspin1controlsskeletalmuscledevelopment
AT metzgerdaniel thehistonecodereaderspin1controlsskeletalmuscledevelopment
AT mankethomas thehistonecodereaderspin1controlsskeletalmuscledevelopment
AT guntherthomas thehistonecodereaderspin1controlsskeletalmuscledevelopment
AT schuleroland thehistonecodereaderspin1controlsskeletalmuscledevelopment
AT greschikholger histonecodereaderspin1controlsskeletalmuscledevelopment
AT duteildelphine histonecodereaderspin1controlsskeletalmuscledevelopment
AT messaddeqnadia histonecodereaderspin1controlsskeletalmuscledevelopment
AT willmanndominica histonecodereaderspin1controlsskeletalmuscledevelopment
AT arrigonilaura histonecodereaderspin1controlsskeletalmuscledevelopment
AT summanuela histonecodereaderspin1controlsskeletalmuscledevelopment
AT jungmanfred histonecodereaderspin1controlsskeletalmuscledevelopment
AT metzgerdaniel histonecodereaderspin1controlsskeletalmuscledevelopment
AT mankethomas histonecodereaderspin1controlsskeletalmuscledevelopment
AT guntherthomas histonecodereaderspin1controlsskeletalmuscledevelopment
AT schuleroland histonecodereaderspin1controlsskeletalmuscledevelopment