Cargando…
The histone code reader Spin1 controls skeletal muscle development
While several studies correlated increased expression of the histone code reader Spin1 with tumor formation or growth, little is known about physiological functions of the protein. We generated Spin1(M5) mice with ablation of Spin1 in myoblast precursors using the Myf5-Cre deleter strain. Most Spin1...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5775400/ https://www.ncbi.nlm.nih.gov/pubmed/29168801 http://dx.doi.org/10.1038/cddis.2017.468 |
_version_ | 1783293898884382720 |
---|---|
author | Greschik, Holger Duteil, Delphine Messaddeq, Nadia Willmann, Dominica Arrigoni, Laura Sum, Manuela Jung, Manfred Metzger, Daniel Manke, Thomas Günther, Thomas Schüle, Roland |
author_facet | Greschik, Holger Duteil, Delphine Messaddeq, Nadia Willmann, Dominica Arrigoni, Laura Sum, Manuela Jung, Manfred Metzger, Daniel Manke, Thomas Günther, Thomas Schüle, Roland |
author_sort | Greschik, Holger |
collection | PubMed |
description | While several studies correlated increased expression of the histone code reader Spin1 with tumor formation or growth, little is known about physiological functions of the protein. We generated Spin1(M5) mice with ablation of Spin1 in myoblast precursors using the Myf5-Cre deleter strain. Most Spin1(M5) mice die shortly after birth displaying severe sarcomere disorganization and necrosis. Surviving Spin1(M5) mice are growth-retarded and exhibit the most prominent defects in soleus, tibialis anterior, and diaphragm muscle. Transcriptome analyses of limb muscle at embryonic day (E) 15.5, E16.5, and at three weeks of age provided evidence for aberrant fetal myogenesis and identified deregulated skeletal muscle (SkM) functional networks. Determination of genome-wide chromatin occupancy in primary myoblast revealed direct Spin1 target genes and suggested that deregulated basic helix-loop-helix transcription factor networks account for developmental defects in Spin1(M5) fetuses. Furthermore, correlating histological and transcriptome analyses, we show that aberrant expression of titin-associated proteins, abnormal glycogen metabolism, and neuromuscular junction defects contribute to SkM pathology in Spin1(M5) mice. Together, we describe the first example of a histone code reader controlling SkM development in mice, which hints at Spin1 as a potential player in human SkM disease. |
format | Online Article Text |
id | pubmed-5775400 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | Nature Publishing Group |
record_format | MEDLINE/PubMed |
spelling | pubmed-57754002018-01-23 The histone code reader Spin1 controls skeletal muscle development Greschik, Holger Duteil, Delphine Messaddeq, Nadia Willmann, Dominica Arrigoni, Laura Sum, Manuela Jung, Manfred Metzger, Daniel Manke, Thomas Günther, Thomas Schüle, Roland Cell Death Dis Original Article While several studies correlated increased expression of the histone code reader Spin1 with tumor formation or growth, little is known about physiological functions of the protein. We generated Spin1(M5) mice with ablation of Spin1 in myoblast precursors using the Myf5-Cre deleter strain. Most Spin1(M5) mice die shortly after birth displaying severe sarcomere disorganization and necrosis. Surviving Spin1(M5) mice are growth-retarded and exhibit the most prominent defects in soleus, tibialis anterior, and diaphragm muscle. Transcriptome analyses of limb muscle at embryonic day (E) 15.5, E16.5, and at three weeks of age provided evidence for aberrant fetal myogenesis and identified deregulated skeletal muscle (SkM) functional networks. Determination of genome-wide chromatin occupancy in primary myoblast revealed direct Spin1 target genes and suggested that deregulated basic helix-loop-helix transcription factor networks account for developmental defects in Spin1(M5) fetuses. Furthermore, correlating histological and transcriptome analyses, we show that aberrant expression of titin-associated proteins, abnormal glycogen metabolism, and neuromuscular junction defects contribute to SkM pathology in Spin1(M5) mice. Together, we describe the first example of a histone code reader controlling SkM development in mice, which hints at Spin1 as a potential player in human SkM disease. Nature Publishing Group 2017-11 2017-11-23 /pmc/articles/PMC5775400/ /pubmed/29168801 http://dx.doi.org/10.1038/cddis.2017.468 Text en Copyright © 2017 The Author(s) http://creativecommons.org/licenses/by/4.0/ Cell Death and Disease is an open-access journal published by Nature Publishing Group. This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ |
spellingShingle | Original Article Greschik, Holger Duteil, Delphine Messaddeq, Nadia Willmann, Dominica Arrigoni, Laura Sum, Manuela Jung, Manfred Metzger, Daniel Manke, Thomas Günther, Thomas Schüle, Roland The histone code reader Spin1 controls skeletal muscle development |
title | The histone code reader Spin1 controls skeletal muscle development |
title_full | The histone code reader Spin1 controls skeletal muscle development |
title_fullStr | The histone code reader Spin1 controls skeletal muscle development |
title_full_unstemmed | The histone code reader Spin1 controls skeletal muscle development |
title_short | The histone code reader Spin1 controls skeletal muscle development |
title_sort | histone code reader spin1 controls skeletal muscle development |
topic | Original Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5775400/ https://www.ncbi.nlm.nih.gov/pubmed/29168801 http://dx.doi.org/10.1038/cddis.2017.468 |
work_keys_str_mv | AT greschikholger thehistonecodereaderspin1controlsskeletalmuscledevelopment AT duteildelphine thehistonecodereaderspin1controlsskeletalmuscledevelopment AT messaddeqnadia thehistonecodereaderspin1controlsskeletalmuscledevelopment AT willmanndominica thehistonecodereaderspin1controlsskeletalmuscledevelopment AT arrigonilaura thehistonecodereaderspin1controlsskeletalmuscledevelopment AT summanuela thehistonecodereaderspin1controlsskeletalmuscledevelopment AT jungmanfred thehistonecodereaderspin1controlsskeletalmuscledevelopment AT metzgerdaniel thehistonecodereaderspin1controlsskeletalmuscledevelopment AT mankethomas thehistonecodereaderspin1controlsskeletalmuscledevelopment AT guntherthomas thehistonecodereaderspin1controlsskeletalmuscledevelopment AT schuleroland thehistonecodereaderspin1controlsskeletalmuscledevelopment AT greschikholger histonecodereaderspin1controlsskeletalmuscledevelopment AT duteildelphine histonecodereaderspin1controlsskeletalmuscledevelopment AT messaddeqnadia histonecodereaderspin1controlsskeletalmuscledevelopment AT willmanndominica histonecodereaderspin1controlsskeletalmuscledevelopment AT arrigonilaura histonecodereaderspin1controlsskeletalmuscledevelopment AT summanuela histonecodereaderspin1controlsskeletalmuscledevelopment AT jungmanfred histonecodereaderspin1controlsskeletalmuscledevelopment AT metzgerdaniel histonecodereaderspin1controlsskeletalmuscledevelopment AT mankethomas histonecodereaderspin1controlsskeletalmuscledevelopment AT guntherthomas histonecodereaderspin1controlsskeletalmuscledevelopment AT schuleroland histonecodereaderspin1controlsskeletalmuscledevelopment |