Cargando…

Ly6G+ neutrophil-derived miR-223 inhibits the NLRP3 inflammasome in mitochondrial DAMP-induced acute lung injury

MicroRNA (miRNA) mediates RNA interference to regulate a variety of innate immune processes, but how miRNAs coordinate the mechanisms underlying acute lung injury/acute respiratory distress syndrome (ALI/ARDS) in patients with pulmonary inflammatory injury is still unknown. In this study, we demonst...

Descripción completa

Detalles Bibliográficos
Autores principales: Feng, Zunyong, Qi, Shimei, Zhang, Yue, Qi, Zhilin, Yan, Liang, Zhou, Jing, He, Fang, Li, Qianqian, Yang, Yanyan, Chen, Qun, Xiao, Shi, Li, Qiang, Chen, Yang, Zhang, Yao
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5775410/
https://www.ncbi.nlm.nih.gov/pubmed/29144508
http://dx.doi.org/10.1038/cddis.2017.549
Descripción
Sumario:MicroRNA (miRNA) mediates RNA interference to regulate a variety of innate immune processes, but how miRNAs coordinate the mechanisms underlying acute lung injury/acute respiratory distress syndrome (ALI/ARDS) in patients with pulmonary inflammatory injury is still unknown. In this study, we demonstrated that miR-223 limits the number of Ly6G+ neutrophils and inhibits the activity of the NLRP3 inflammasome to alleviate ALI induced by mitochondrial damage-associated molecular patterns (DAMPs) (MTDs). miR-223 expression is increased in the lungs of MTD-induced mice or ARDS patients following trauma/transfusion or following the physiological remission of ALI/ARDS. miR-223−/+ mice exhibited more severe ALI and cytokine dysregulation. Other studies have shown that MTD-induced increases in miR-223 expression are mainly contributed by Ly6G+ neutrophils from the haematopoietic system. miR-223 blocks bone marrow-derived Ly6G+ neutrophil differentiation and inhibits peripheral cytokine release. In addition, MTD-induced miR-223 expression activates a negative feedback pathway that targets the inhibition of NLRP3 expression and IL-1β release; therefore, miR-223 deficiency can lead to the sustained activation of NLRP3-IL-1β. Finally, elimination of peripheral Ly6G+ neutrophils and pharmacological blockade of the miR-223–NLRP3–IL-1β signalling axis could alleviate MTD-induced ALI. In summary, miR-223 is essential for regulating the pathogenesis of DAMP-induced ALI.