Cargando…

A Mass Spectrometry-Based Approach for Mapping Protein Subcellular Localization Reveals the Spatial Proteome of Mouse Primary Neurons

We previously developed a mass spectrometry-based method, dynamic organellar maps, for the determination of protein subcellular localization and identification of translocation events in comparative experiments. The use of metabolic labeling for quantification (stable isotope labeling by amino acids...

Descripción completa

Detalles Bibliográficos
Autores principales: Itzhak, Daniel N., Davies, Colin, Tyanova, Stefka, Mishra, Archana, Williamson, James, Antrobus, Robin, Cox, Jürgen, Weekes, Michael P., Borner, Georg H.H.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Cell Press 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5775508/
https://www.ncbi.nlm.nih.gov/pubmed/28903049
http://dx.doi.org/10.1016/j.celrep.2017.08.063
_version_ 1783293923100196864
author Itzhak, Daniel N.
Davies, Colin
Tyanova, Stefka
Mishra, Archana
Williamson, James
Antrobus, Robin
Cox, Jürgen
Weekes, Michael P.
Borner, Georg H.H.
author_facet Itzhak, Daniel N.
Davies, Colin
Tyanova, Stefka
Mishra, Archana
Williamson, James
Antrobus, Robin
Cox, Jürgen
Weekes, Michael P.
Borner, Georg H.H.
author_sort Itzhak, Daniel N.
collection PubMed
description We previously developed a mass spectrometry-based method, dynamic organellar maps, for the determination of protein subcellular localization and identification of translocation events in comparative experiments. The use of metabolic labeling for quantification (stable isotope labeling by amino acids in cell culture [SILAC]) renders the method best suited to cells grown in culture. Here, we have adapted the workflow to both label-free quantification (LFQ) and chemical labeling/multiplexing strategies (tandem mass tagging [TMT]). Both methods are highly effective for the generation of organellar maps and capture of protein translocations. Furthermore, application of label-free organellar mapping to acutely isolated mouse primary neurons provided subcellular localization and copy-number information for over 8,000 proteins, allowing a detailed analysis of organellar organization. Our study extends the scope of dynamic organellar maps to any cell type or tissue and also to high-throughput screening.
format Online
Article
Text
id pubmed-5775508
institution National Center for Biotechnology Information
language English
publishDate 2017
publisher Cell Press
record_format MEDLINE/PubMed
spelling pubmed-57755082018-01-29 A Mass Spectrometry-Based Approach for Mapping Protein Subcellular Localization Reveals the Spatial Proteome of Mouse Primary Neurons Itzhak, Daniel N. Davies, Colin Tyanova, Stefka Mishra, Archana Williamson, James Antrobus, Robin Cox, Jürgen Weekes, Michael P. Borner, Georg H.H. Cell Rep Article We previously developed a mass spectrometry-based method, dynamic organellar maps, for the determination of protein subcellular localization and identification of translocation events in comparative experiments. The use of metabolic labeling for quantification (stable isotope labeling by amino acids in cell culture [SILAC]) renders the method best suited to cells grown in culture. Here, we have adapted the workflow to both label-free quantification (LFQ) and chemical labeling/multiplexing strategies (tandem mass tagging [TMT]). Both methods are highly effective for the generation of organellar maps and capture of protein translocations. Furthermore, application of label-free organellar mapping to acutely isolated mouse primary neurons provided subcellular localization and copy-number information for over 8,000 proteins, allowing a detailed analysis of organellar organization. Our study extends the scope of dynamic organellar maps to any cell type or tissue and also to high-throughput screening. Cell Press 2017-09-12 /pmc/articles/PMC5775508/ /pubmed/28903049 http://dx.doi.org/10.1016/j.celrep.2017.08.063 Text en © 2017 The Authors http://creativecommons.org/licenses/by/4.0/ This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Itzhak, Daniel N.
Davies, Colin
Tyanova, Stefka
Mishra, Archana
Williamson, James
Antrobus, Robin
Cox, Jürgen
Weekes, Michael P.
Borner, Georg H.H.
A Mass Spectrometry-Based Approach for Mapping Protein Subcellular Localization Reveals the Spatial Proteome of Mouse Primary Neurons
title A Mass Spectrometry-Based Approach for Mapping Protein Subcellular Localization Reveals the Spatial Proteome of Mouse Primary Neurons
title_full A Mass Spectrometry-Based Approach for Mapping Protein Subcellular Localization Reveals the Spatial Proteome of Mouse Primary Neurons
title_fullStr A Mass Spectrometry-Based Approach for Mapping Protein Subcellular Localization Reveals the Spatial Proteome of Mouse Primary Neurons
title_full_unstemmed A Mass Spectrometry-Based Approach for Mapping Protein Subcellular Localization Reveals the Spatial Proteome of Mouse Primary Neurons
title_short A Mass Spectrometry-Based Approach for Mapping Protein Subcellular Localization Reveals the Spatial Proteome of Mouse Primary Neurons
title_sort mass spectrometry-based approach for mapping protein subcellular localization reveals the spatial proteome of mouse primary neurons
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5775508/
https://www.ncbi.nlm.nih.gov/pubmed/28903049
http://dx.doi.org/10.1016/j.celrep.2017.08.063
work_keys_str_mv AT itzhakdanieln amassspectrometrybasedapproachformappingproteinsubcellularlocalizationrevealsthespatialproteomeofmouseprimaryneurons
AT daviescolin amassspectrometrybasedapproachformappingproteinsubcellularlocalizationrevealsthespatialproteomeofmouseprimaryneurons
AT tyanovastefka amassspectrometrybasedapproachformappingproteinsubcellularlocalizationrevealsthespatialproteomeofmouseprimaryneurons
AT mishraarchana amassspectrometrybasedapproachformappingproteinsubcellularlocalizationrevealsthespatialproteomeofmouseprimaryneurons
AT williamsonjames amassspectrometrybasedapproachformappingproteinsubcellularlocalizationrevealsthespatialproteomeofmouseprimaryneurons
AT antrobusrobin amassspectrometrybasedapproachformappingproteinsubcellularlocalizationrevealsthespatialproteomeofmouseprimaryneurons
AT coxjurgen amassspectrometrybasedapproachformappingproteinsubcellularlocalizationrevealsthespatialproteomeofmouseprimaryneurons
AT weekesmichaelp amassspectrometrybasedapproachformappingproteinsubcellularlocalizationrevealsthespatialproteomeofmouseprimaryneurons
AT bornergeorghh amassspectrometrybasedapproachformappingproteinsubcellularlocalizationrevealsthespatialproteomeofmouseprimaryneurons
AT itzhakdanieln massspectrometrybasedapproachformappingproteinsubcellularlocalizationrevealsthespatialproteomeofmouseprimaryneurons
AT daviescolin massspectrometrybasedapproachformappingproteinsubcellularlocalizationrevealsthespatialproteomeofmouseprimaryneurons
AT tyanovastefka massspectrometrybasedapproachformappingproteinsubcellularlocalizationrevealsthespatialproteomeofmouseprimaryneurons
AT mishraarchana massspectrometrybasedapproachformappingproteinsubcellularlocalizationrevealsthespatialproteomeofmouseprimaryneurons
AT williamsonjames massspectrometrybasedapproachformappingproteinsubcellularlocalizationrevealsthespatialproteomeofmouseprimaryneurons
AT antrobusrobin massspectrometrybasedapproachformappingproteinsubcellularlocalizationrevealsthespatialproteomeofmouseprimaryneurons
AT coxjurgen massspectrometrybasedapproachformappingproteinsubcellularlocalizationrevealsthespatialproteomeofmouseprimaryneurons
AT weekesmichaelp massspectrometrybasedapproachformappingproteinsubcellularlocalizationrevealsthespatialproteomeofmouseprimaryneurons
AT bornergeorghh massspectrometrybasedapproachformappingproteinsubcellularlocalizationrevealsthespatialproteomeofmouseprimaryneurons