Cargando…
A Mass Spectrometry-Based Approach for Mapping Protein Subcellular Localization Reveals the Spatial Proteome of Mouse Primary Neurons
We previously developed a mass spectrometry-based method, dynamic organellar maps, for the determination of protein subcellular localization and identification of translocation events in comparative experiments. The use of metabolic labeling for quantification (stable isotope labeling by amino acids...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cell Press
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5775508/ https://www.ncbi.nlm.nih.gov/pubmed/28903049 http://dx.doi.org/10.1016/j.celrep.2017.08.063 |
_version_ | 1783293923100196864 |
---|---|
author | Itzhak, Daniel N. Davies, Colin Tyanova, Stefka Mishra, Archana Williamson, James Antrobus, Robin Cox, Jürgen Weekes, Michael P. Borner, Georg H.H. |
author_facet | Itzhak, Daniel N. Davies, Colin Tyanova, Stefka Mishra, Archana Williamson, James Antrobus, Robin Cox, Jürgen Weekes, Michael P. Borner, Georg H.H. |
author_sort | Itzhak, Daniel N. |
collection | PubMed |
description | We previously developed a mass spectrometry-based method, dynamic organellar maps, for the determination of protein subcellular localization and identification of translocation events in comparative experiments. The use of metabolic labeling for quantification (stable isotope labeling by amino acids in cell culture [SILAC]) renders the method best suited to cells grown in culture. Here, we have adapted the workflow to both label-free quantification (LFQ) and chemical labeling/multiplexing strategies (tandem mass tagging [TMT]). Both methods are highly effective for the generation of organellar maps and capture of protein translocations. Furthermore, application of label-free organellar mapping to acutely isolated mouse primary neurons provided subcellular localization and copy-number information for over 8,000 proteins, allowing a detailed analysis of organellar organization. Our study extends the scope of dynamic organellar maps to any cell type or tissue and also to high-throughput screening. |
format | Online Article Text |
id | pubmed-5775508 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | Cell Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-57755082018-01-29 A Mass Spectrometry-Based Approach for Mapping Protein Subcellular Localization Reveals the Spatial Proteome of Mouse Primary Neurons Itzhak, Daniel N. Davies, Colin Tyanova, Stefka Mishra, Archana Williamson, James Antrobus, Robin Cox, Jürgen Weekes, Michael P. Borner, Georg H.H. Cell Rep Article We previously developed a mass spectrometry-based method, dynamic organellar maps, for the determination of protein subcellular localization and identification of translocation events in comparative experiments. The use of metabolic labeling for quantification (stable isotope labeling by amino acids in cell culture [SILAC]) renders the method best suited to cells grown in culture. Here, we have adapted the workflow to both label-free quantification (LFQ) and chemical labeling/multiplexing strategies (tandem mass tagging [TMT]). Both methods are highly effective for the generation of organellar maps and capture of protein translocations. Furthermore, application of label-free organellar mapping to acutely isolated mouse primary neurons provided subcellular localization and copy-number information for over 8,000 proteins, allowing a detailed analysis of organellar organization. Our study extends the scope of dynamic organellar maps to any cell type or tissue and also to high-throughput screening. Cell Press 2017-09-12 /pmc/articles/PMC5775508/ /pubmed/28903049 http://dx.doi.org/10.1016/j.celrep.2017.08.063 Text en © 2017 The Authors http://creativecommons.org/licenses/by/4.0/ This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Itzhak, Daniel N. Davies, Colin Tyanova, Stefka Mishra, Archana Williamson, James Antrobus, Robin Cox, Jürgen Weekes, Michael P. Borner, Georg H.H. A Mass Spectrometry-Based Approach for Mapping Protein Subcellular Localization Reveals the Spatial Proteome of Mouse Primary Neurons |
title | A Mass Spectrometry-Based Approach for Mapping Protein Subcellular Localization Reveals the Spatial Proteome of Mouse Primary Neurons |
title_full | A Mass Spectrometry-Based Approach for Mapping Protein Subcellular Localization Reveals the Spatial Proteome of Mouse Primary Neurons |
title_fullStr | A Mass Spectrometry-Based Approach for Mapping Protein Subcellular Localization Reveals the Spatial Proteome of Mouse Primary Neurons |
title_full_unstemmed | A Mass Spectrometry-Based Approach for Mapping Protein Subcellular Localization Reveals the Spatial Proteome of Mouse Primary Neurons |
title_short | A Mass Spectrometry-Based Approach for Mapping Protein Subcellular Localization Reveals the Spatial Proteome of Mouse Primary Neurons |
title_sort | mass spectrometry-based approach for mapping protein subcellular localization reveals the spatial proteome of mouse primary neurons |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5775508/ https://www.ncbi.nlm.nih.gov/pubmed/28903049 http://dx.doi.org/10.1016/j.celrep.2017.08.063 |
work_keys_str_mv | AT itzhakdanieln amassspectrometrybasedapproachformappingproteinsubcellularlocalizationrevealsthespatialproteomeofmouseprimaryneurons AT daviescolin amassspectrometrybasedapproachformappingproteinsubcellularlocalizationrevealsthespatialproteomeofmouseprimaryneurons AT tyanovastefka amassspectrometrybasedapproachformappingproteinsubcellularlocalizationrevealsthespatialproteomeofmouseprimaryneurons AT mishraarchana amassspectrometrybasedapproachformappingproteinsubcellularlocalizationrevealsthespatialproteomeofmouseprimaryneurons AT williamsonjames amassspectrometrybasedapproachformappingproteinsubcellularlocalizationrevealsthespatialproteomeofmouseprimaryneurons AT antrobusrobin amassspectrometrybasedapproachformappingproteinsubcellularlocalizationrevealsthespatialproteomeofmouseprimaryneurons AT coxjurgen amassspectrometrybasedapproachformappingproteinsubcellularlocalizationrevealsthespatialproteomeofmouseprimaryneurons AT weekesmichaelp amassspectrometrybasedapproachformappingproteinsubcellularlocalizationrevealsthespatialproteomeofmouseprimaryneurons AT bornergeorghh amassspectrometrybasedapproachformappingproteinsubcellularlocalizationrevealsthespatialproteomeofmouseprimaryneurons AT itzhakdanieln massspectrometrybasedapproachformappingproteinsubcellularlocalizationrevealsthespatialproteomeofmouseprimaryneurons AT daviescolin massspectrometrybasedapproachformappingproteinsubcellularlocalizationrevealsthespatialproteomeofmouseprimaryneurons AT tyanovastefka massspectrometrybasedapproachformappingproteinsubcellularlocalizationrevealsthespatialproteomeofmouseprimaryneurons AT mishraarchana massspectrometrybasedapproachformappingproteinsubcellularlocalizationrevealsthespatialproteomeofmouseprimaryneurons AT williamsonjames massspectrometrybasedapproachformappingproteinsubcellularlocalizationrevealsthespatialproteomeofmouseprimaryneurons AT antrobusrobin massspectrometrybasedapproachformappingproteinsubcellularlocalizationrevealsthespatialproteomeofmouseprimaryneurons AT coxjurgen massspectrometrybasedapproachformappingproteinsubcellularlocalizationrevealsthespatialproteomeofmouseprimaryneurons AT weekesmichaelp massspectrometrybasedapproachformappingproteinsubcellularlocalizationrevealsthespatialproteomeofmouseprimaryneurons AT bornergeorghh massspectrometrybasedapproachformappingproteinsubcellularlocalizationrevealsthespatialproteomeofmouseprimaryneurons |