Cargando…

Inclusion of edaphic predictors for enhancement of models to determine distribution of soil-transmitted helminths: the case of Zimbabwe

BACKGROUND: Reliable mapping of soil-transmitted helminth (STH) parasites requires rigorous statistical and machine learning algorithms capable of integrating the combined influence of several determinants to predict distributions. This study tested whether combining edaphic predictors with relevant...

Descripción completa

Detalles Bibliográficos
Autores principales: Midzi, Nicholas, Kavhu, Blessing, Manangazira, Portia, Phiri, Isaac, Mutambu, Susan L., Tshuma, Cremants, Chimbari, Moses J., Munyati, Shungu, Midzi, Stanely M., Charimari, Lincon, Ncube, Anatoria, Mutsaka-Makuvaza, Masceline J., Soko, White, Madzima, Emmanuel, Hlerema, Gibson, Mbedzi, Joel, Mhlanga, Gibson, Masocha, Mhosisi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5775612/
https://www.ncbi.nlm.nih.gov/pubmed/29351762
http://dx.doi.org/10.1186/s13071-017-2586-6
_version_ 1783293947386265600
author Midzi, Nicholas
Kavhu, Blessing
Manangazira, Portia
Phiri, Isaac
Mutambu, Susan L.
Tshuma, Cremants
Chimbari, Moses J.
Munyati, Shungu
Midzi, Stanely M.
Charimari, Lincon
Ncube, Anatoria
Mutsaka-Makuvaza, Masceline J.
Soko, White
Madzima, Emmanuel
Hlerema, Gibson
Mbedzi, Joel
Mhlanga, Gibson
Masocha, Mhosisi
author_facet Midzi, Nicholas
Kavhu, Blessing
Manangazira, Portia
Phiri, Isaac
Mutambu, Susan L.
Tshuma, Cremants
Chimbari, Moses J.
Munyati, Shungu
Midzi, Stanely M.
Charimari, Lincon
Ncube, Anatoria
Mutsaka-Makuvaza, Masceline J.
Soko, White
Madzima, Emmanuel
Hlerema, Gibson
Mbedzi, Joel
Mhlanga, Gibson
Masocha, Mhosisi
author_sort Midzi, Nicholas
collection PubMed
description BACKGROUND: Reliable mapping of soil-transmitted helminth (STH) parasites requires rigorous statistical and machine learning algorithms capable of integrating the combined influence of several determinants to predict distributions. This study tested whether combining edaphic predictors with relevant environmental predictors improves model performance when predicting the distribution of STH, Ascaris lumbricoides and hookworms at a national scale in Zimbabwe. METHODS: Geo-referenced parasitological data obtained from a 2010/2011 national survey indicating a confirmed presence or absence of STH among school children aged 10–15 years was used to calibrate ten species distribution models (SDMs). The performance of SDMs calibrated with a set of environmental and edaphic variables was compared to that of SDMs calibrated with environmental variables only. Model performance was evaluated using the true skill statistic and receiver operating characteristic curve. RESULTS: Results show a significant improvement in model performance for both A. lumbricoides and hookworms for all ten SDMs after edaphic variables were combined with environmental variables in the modelling of the geographical distribution of the two STHs at national scale. Using the top three performing models, a consensus prediction was developed to generate the first continuous maps of the potential distribution of the two STHs in Zimbabwe. CONCLUSIONS: The findings from this study demonstrate significant model improvement if relevant edaphic variables are included in model calibration resulting in more accurate mapping of STH. The results also provide spatially-explicit information to aid targeted control of STHs in Zimbabwe and other countries with STH burden.
format Online
Article
Text
id pubmed-5775612
institution National Center for Biotechnology Information
language English
publishDate 2018
publisher BioMed Central
record_format MEDLINE/PubMed
spelling pubmed-57756122018-01-31 Inclusion of edaphic predictors for enhancement of models to determine distribution of soil-transmitted helminths: the case of Zimbabwe Midzi, Nicholas Kavhu, Blessing Manangazira, Portia Phiri, Isaac Mutambu, Susan L. Tshuma, Cremants Chimbari, Moses J. Munyati, Shungu Midzi, Stanely M. Charimari, Lincon Ncube, Anatoria Mutsaka-Makuvaza, Masceline J. Soko, White Madzima, Emmanuel Hlerema, Gibson Mbedzi, Joel Mhlanga, Gibson Masocha, Mhosisi Parasit Vectors Research BACKGROUND: Reliable mapping of soil-transmitted helminth (STH) parasites requires rigorous statistical and machine learning algorithms capable of integrating the combined influence of several determinants to predict distributions. This study tested whether combining edaphic predictors with relevant environmental predictors improves model performance when predicting the distribution of STH, Ascaris lumbricoides and hookworms at a national scale in Zimbabwe. METHODS: Geo-referenced parasitological data obtained from a 2010/2011 national survey indicating a confirmed presence or absence of STH among school children aged 10–15 years was used to calibrate ten species distribution models (SDMs). The performance of SDMs calibrated with a set of environmental and edaphic variables was compared to that of SDMs calibrated with environmental variables only. Model performance was evaluated using the true skill statistic and receiver operating characteristic curve. RESULTS: Results show a significant improvement in model performance for both A. lumbricoides and hookworms for all ten SDMs after edaphic variables were combined with environmental variables in the modelling of the geographical distribution of the two STHs at national scale. Using the top three performing models, a consensus prediction was developed to generate the first continuous maps of the potential distribution of the two STHs in Zimbabwe. CONCLUSIONS: The findings from this study demonstrate significant model improvement if relevant edaphic variables are included in model calibration resulting in more accurate mapping of STH. The results also provide spatially-explicit information to aid targeted control of STHs in Zimbabwe and other countries with STH burden. BioMed Central 2018-01-19 /pmc/articles/PMC5775612/ /pubmed/29351762 http://dx.doi.org/10.1186/s13071-017-2586-6 Text en © The Author(s). 2018 Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
spellingShingle Research
Midzi, Nicholas
Kavhu, Blessing
Manangazira, Portia
Phiri, Isaac
Mutambu, Susan L.
Tshuma, Cremants
Chimbari, Moses J.
Munyati, Shungu
Midzi, Stanely M.
Charimari, Lincon
Ncube, Anatoria
Mutsaka-Makuvaza, Masceline J.
Soko, White
Madzima, Emmanuel
Hlerema, Gibson
Mbedzi, Joel
Mhlanga, Gibson
Masocha, Mhosisi
Inclusion of edaphic predictors for enhancement of models to determine distribution of soil-transmitted helminths: the case of Zimbabwe
title Inclusion of edaphic predictors for enhancement of models to determine distribution of soil-transmitted helminths: the case of Zimbabwe
title_full Inclusion of edaphic predictors for enhancement of models to determine distribution of soil-transmitted helminths: the case of Zimbabwe
title_fullStr Inclusion of edaphic predictors for enhancement of models to determine distribution of soil-transmitted helminths: the case of Zimbabwe
title_full_unstemmed Inclusion of edaphic predictors for enhancement of models to determine distribution of soil-transmitted helminths: the case of Zimbabwe
title_short Inclusion of edaphic predictors for enhancement of models to determine distribution of soil-transmitted helminths: the case of Zimbabwe
title_sort inclusion of edaphic predictors for enhancement of models to determine distribution of soil-transmitted helminths: the case of zimbabwe
topic Research
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5775612/
https://www.ncbi.nlm.nih.gov/pubmed/29351762
http://dx.doi.org/10.1186/s13071-017-2586-6
work_keys_str_mv AT midzinicholas inclusionofedaphicpredictorsforenhancementofmodelstodeterminedistributionofsoiltransmittedhelminthsthecaseofzimbabwe
AT kavhublessing inclusionofedaphicpredictorsforenhancementofmodelstodeterminedistributionofsoiltransmittedhelminthsthecaseofzimbabwe
AT manangaziraportia inclusionofedaphicpredictorsforenhancementofmodelstodeterminedistributionofsoiltransmittedhelminthsthecaseofzimbabwe
AT phiriisaac inclusionofedaphicpredictorsforenhancementofmodelstodeterminedistributionofsoiltransmittedhelminthsthecaseofzimbabwe
AT mutambususanl inclusionofedaphicpredictorsforenhancementofmodelstodeterminedistributionofsoiltransmittedhelminthsthecaseofzimbabwe
AT tshumacremants inclusionofedaphicpredictorsforenhancementofmodelstodeterminedistributionofsoiltransmittedhelminthsthecaseofzimbabwe
AT chimbarimosesj inclusionofedaphicpredictorsforenhancementofmodelstodeterminedistributionofsoiltransmittedhelminthsthecaseofzimbabwe
AT munyatishungu inclusionofedaphicpredictorsforenhancementofmodelstodeterminedistributionofsoiltransmittedhelminthsthecaseofzimbabwe
AT midzistanelym inclusionofedaphicpredictorsforenhancementofmodelstodeterminedistributionofsoiltransmittedhelminthsthecaseofzimbabwe
AT charimarilincon inclusionofedaphicpredictorsforenhancementofmodelstodeterminedistributionofsoiltransmittedhelminthsthecaseofzimbabwe
AT ncubeanatoria inclusionofedaphicpredictorsforenhancementofmodelstodeterminedistributionofsoiltransmittedhelminthsthecaseofzimbabwe
AT mutsakamakuvazamascelinej inclusionofedaphicpredictorsforenhancementofmodelstodeterminedistributionofsoiltransmittedhelminthsthecaseofzimbabwe
AT sokowhite inclusionofedaphicpredictorsforenhancementofmodelstodeterminedistributionofsoiltransmittedhelminthsthecaseofzimbabwe
AT madzimaemmanuel inclusionofedaphicpredictorsforenhancementofmodelstodeterminedistributionofsoiltransmittedhelminthsthecaseofzimbabwe
AT hleremagibson inclusionofedaphicpredictorsforenhancementofmodelstodeterminedistributionofsoiltransmittedhelminthsthecaseofzimbabwe
AT mbedzijoel inclusionofedaphicpredictorsforenhancementofmodelstodeterminedistributionofsoiltransmittedhelminthsthecaseofzimbabwe
AT mhlangagibson inclusionofedaphicpredictorsforenhancementofmodelstodeterminedistributionofsoiltransmittedhelminthsthecaseofzimbabwe
AT masochamhosisi inclusionofedaphicpredictorsforenhancementofmodelstodeterminedistributionofsoiltransmittedhelminthsthecaseofzimbabwe