Cargando…
Metabolomics diagnostic approach to mustard airway diseases: a preliminary study
OBJECTIVE(S): This study aims to evaluate combined proton nuclear magnetic resonance ((1)H NMR) spectroscopy and gas chromatography-mass spectrometry (GC-MS) metabolic profiling approaches, for discriminating between mustard airway diseases (MADs) and healthy controls and for providing biochemical i...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Mashhad University of Medical Sciences
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5776438/ https://www.ncbi.nlm.nih.gov/pubmed/29372038 http://dx.doi.org/10.22038/IJBMS.2017.23792.5982 |
Sumario: | OBJECTIVE(S): This study aims to evaluate combined proton nuclear magnetic resonance ((1)H NMR) spectroscopy and gas chromatography-mass spectrometry (GC-MS) metabolic profiling approaches, for discriminating between mustard airway diseases (MADs) and healthy controls and for providing biochemical information on this disease. MATERIALS AND METHODS: In the present study, analysis of serum samples collected from 17 MAD subjects and 12 healthy controls was performed using NMR. Of these subjects, 14 (8 patients and 6 controls) were analyzed by GC-MS. Then, their spectral profiles were subjected to principal component analysis (PCA) and orthogonal partial least squares regression discriminant analysis (OPLS-DA). RESULTS: A panel of twenty eight metabolite biomarkers was generated for MADs, sixteen NMR-derived metabolites (3-methyl-2-oxovaleric acid, 3-hydroxyisobutyrate, lactic acid, lysine, glutamic acid, proline, hydroxyproline, dimethylamine, creatine, citrulline, choline, acetic acid, acetoacetate, cholesterol, alanine, and lipid (mainly VLDL)) and twelve GC-MS-derived metabolites (threonine, phenylalanine, citric acid, myristic acid, pentadecanoic acid, tyrosine, arachidonic acid, lactic acid, propionic acid, 3-hydroxybutyric acid, linoleic acid, and oleic acid). This composite biomarker panel could effectively discriminate MAD subjects from healthy controls, achieving an area under receiver operating characteristic curve (AUC) values of 1 and 0.79 for NMR and GC-MS, respectively. CONCLUSION: In the present study, a robust panel of twenty-eight biomarkers for detecting MADs was established. This panel is involved in three metabolic pathways including aminoacyl-tRNA biosynthesis, arginine, and proline metabolism, and synthesis and degradation of ketone bodies, and could differentiate MAD subjects from healthy controls with a higher accuracy. |
---|