Cargando…

Protective effects of scopolamine and penehyclidine hydrochloride on acute cerebral ischemia-reperfusion injury after cardiopulmonary resuscitation and effects on cytokines

The objective of this study was to investigate the protective effects of scopolamine and penehyclidine hydrochloride on acute cerebral ischemia-reperfusion injury after cardiopulmonary resuscitation, and the effect on cytokine levels. Eighty patients with cardiac arrest admitted to our hospital from...

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, Dengqin, Jiang, Qi, Du, Xiuling
Formato: Online Artículo Texto
Lenguaje:English
Publicado: D.A. Spandidos 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5776622/
https://www.ncbi.nlm.nih.gov/pubmed/29434800
http://dx.doi.org/10.3892/etm.2017.5646
Descripción
Sumario:The objective of this study was to investigate the protective effects of scopolamine and penehyclidine hydrochloride on acute cerebral ischemia-reperfusion injury after cardiopulmonary resuscitation, and the effect on cytokine levels. Eighty patients with cardiac arrest admitted to our hospital from June 2011 to December 2015 were recruited and randomly divided into two groups (n=40 each). Following cardiopulmonary resuscitation, scopolamine was administered in the control group, whereas penehyclidine hydrochloride was administered in the observation group. After intervention, the following medical indicators were compared between the groups: Intracranial pressure, cerebral oxygen partial pressure, cerebral perfusion pressure, assessment of the balance of cerebral oxygen supply and demand, levels of neuron-specific enolase (NSE) and blood lactic acid, levels of oxidative stress markers, and levels of inflammatory-related factors. Additionally, the areas of brain tissue edema and National Institutes of Health Stroke Scale (NIHSS) scores before and after intervention were compared. Rescue success rates of the groups were recorded. After intervention, the following indicators were lower in the observation group than in the control group: Intracranial pressure (p<0.05), levels of NSE (p<0.05), levels of blood lactic acid (p<0.05), levels of malondialdehyde (p<0.05), and levels of interleukin 6 (IL-6), tumor necrosis factor-α, IL-1, and hs-CRP (p<0.05). However, the following indicators were higher in the observation group than in the control group: Cerebral oxygen partial pressure, cerebral perfusion pressure (p<0.05), levels of CaO(2), CjvO(2), and CERO(2) (p>0.05), and levels of superoxide dismutase and glutathione peroxidase (p<0.05). Additionally, the areas of brain tissue edema after intervention were smaller in the observation group than those before intervention and those after intervention in the control group (p<0.05). Similarly, the NIHSS scores after intervention in the observation group were lower than those before intervention and those after intervention in the control group (p<0.05). Rescue success rate was significantly higher in observation group than in control group (p<0.05). In conclusion, administration of penehyclidine following cardiopulmonary resuscitation can effectively improve cerebral perfusion pressure, lower intracranial pressure, reduce brain tissue edema and inflammation, and improve neurological function.