Cargando…
Pediatric acute respiratory distress syndrome - current views
Acute respiratory distress syndrome (ARDS) mainly involves acute respiratory failure. In addition to this affected patients feel progressive arterial hypoxemia, dyspnea, and a marked increase in the work of breathing. The only clinical solution for the above pathological state is ventilation. Mechan...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
D.A. Spandidos
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5776650/ https://www.ncbi.nlm.nih.gov/pubmed/29434764 http://dx.doi.org/10.3892/etm.2017.5628 |
Sumario: | Acute respiratory distress syndrome (ARDS) mainly involves acute respiratory failure. In addition to this affected patients feel progressive arterial hypoxemia, dyspnea, and a marked increase in the work of breathing. The only clinical solution for the above pathological state is ventilation. Mechanical ventilation is necessary to support life in ARDs but it itself worsen lung injury and the term is known clinically as ‘ventilation induced lung injury’ (VILI). At the cellular level, respiratory epithelial cells are subjected to cyclic stretch, i.e. repeated cycles of positive and negative strain, during normal tidal ventilation. In aerated areas of diseased lungs, or even normal lungs subjected to injurious positive pressure mechanical ventilation, the cells are at risk of being over distended, and worsening injury by disrupting the alveolar epithelial barrier. Further, hypercapnic acidosis (HCA) in itself confers protection from stretch injury, potentially via a mechanisms involving inhibition of nuclear factor κB (NF-κB), a transcription factor central to inflammation, injury and repair. Mesenchymal stem cells are the latest in the field and are being investigated as a possible therapy for ARDS. |
---|