Cargando…

The genotoxicity of an aqueous extract of Gyejibokryeong-hwan

BACKGROUND: Gyejibokryeong-hwan (Guizhi Fuling Wan in China), a mixture of five herbal plants, is a well-known treatment for renal diseases including those associated with climacteric syndrome. However, the genotoxicity of Gyejibokryeong-hwan has not yet been well established. METHODS: The present s...

Descripción completa

Detalles Bibliográficos
Autores principales: Lee, Mee-Young, Seo, Chang-Seob, Ha, Hyekyung, Park, Eunsook, Kim, Ji-Young, Shin, Hyeun-Kyoo
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5776759/
https://www.ncbi.nlm.nih.gov/pubmed/29357857
http://dx.doi.org/10.1186/s12906-017-2054-z
Descripción
Sumario:BACKGROUND: Gyejibokryeong-hwan (Guizhi Fuling Wan in China), a mixture of five herbal plants, is a well-known treatment for renal diseases including those associated with climacteric syndrome. However, the genotoxicity of Gyejibokryeong-hwan has not yet been well established. METHODS: The present study investigated that the genotoxicity of an aqueous extract of Gyejibokryeong-hwan (GJBRHE): an in vitro chromosomal aberration test using Chinese hamster lung cells, an in vitro bacterial reverse mutation assay (Ames test) with Salmonella typhimurium and Escherichia coli strains, and an in vivo micronucleus test using ICR mouse bone marrow. RESULTS: GJBRHE with or without the S9 mix showed no genotoxicity in the Ames test up to 5000 μg/plate or in the in vivo MN test up to 2000 mg/kg body weight. In contrast, the chromosomal aberration test showed that GJBRHE induced an increase in the number of chromosomal aberrations compared with the control after treatment for 6 h with 4200 μg/mL GJBRHE in the presence of the S9 mix and for 22 h with 800 μg/mL GJBRHE in the absence of the S9 mix. CONCLUSIONS: GJBRHE did not cause detectable genotoxic effects in the bacterial mutation test or the in vivo MN test, however genotoxic effect was detected in the in vitro chromosomal aberration assay. Our results suggest that GJBRHE may be associated with a low risk of carcinogenesis. Thus, further detailed experiments would be needed to clarify the compound responsible for inducing this genotoxicity of GJBRHE and to determine its mechanism.