Cargando…
Paclitaxel-induced hypothermia and hypoperfusion increase breast cancer metastasis and angiogenesis in mice
Housing temperature has been shown to influence thermoregulation and behavior of preclinical cancer models; and anti-cancer drugs typically reduce peripheral blood flow and body temperature. In the present study, the effects of paclitaxel (PTX)-induced reduction of body temperature and peripheral bl...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
D.A. Spandidos
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5776906/ https://www.ncbi.nlm.nih.gov/pubmed/29434941 http://dx.doi.org/10.3892/ol.2017.7621 |
Sumario: | Housing temperature has been shown to influence thermoregulation and behavior of preclinical cancer models; and anti-cancer drugs typically reduce peripheral blood flow and body temperature. In the present study, the effects of paclitaxel (PTX)-induced reduction of body temperature and peripheral blood flow on metastatic 4T1 breast cancer was investigated in a mouse model and the modification of these effects by thermoneutral temperature was also assessed. A single dose of PTX decreased the body temperature and peripheral blood flow in mice housed at a standard temperature (23°C). Furthermore, although lung metastasis and angiogenesis of inoculated 4T1 cells increased in mice pretreated with PTX, mice housed at a thermoneutral temperature (30°C) could compensate their body temperature and peripheral blood flow compared with control mice, and also suppressed 4T1 angiogenesis and metastasis to lung. The present results imply that maintenance of body temperature or efficient energy supply for thermogenesis may prevent tumor relapse or metastasis after chemotherapy. |
---|