Cargando…
The accuracy, fairness, and limits of predicting recidivism
Algorithms for predicting recidivism are commonly used to assess a criminal defendant’s likelihood of committing a crime. These predictions are used in pretrial, parole, and sentencing decisions. Proponents of these systems argue that big data and advanced machine learning make these analyses more a...
Autores principales: | Dressel, Julia, Farid, Hany |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Association for the Advancement of Science
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5777393/ https://www.ncbi.nlm.nih.gov/pubmed/29376122 http://dx.doi.org/10.1126/sciadv.aao5580 |
Ejemplares similares
-
The limits of human predictions of recidivism
por: Lin, Zhiyuan “Jerry”, et al.
Publicado: (2020) -
The predictive value of neurobiological measures for recidivism in delinquent male young adults
por: Zijlmans, Josjan, et al.
Publicado: (2021) -
Age of gray matters: Neuroprediction of recidivism
por: Kiehl, Kent A., et al.
Publicado: (2018) -
Recidivism at the puerto rico trauma hospital
por: Suárez-Cruz, Adriana, et al.
Publicado: (2020) -
Fairness and Accuracy Under Domain Generalization
por: Pham, Thai-Hoang, et al.
Publicado: (2023)