Cargando…

CryoEM structures of the human INO80 chromatin remodelling complex

Access to chromatin for processes such as DNA repair and transcription requires the sliding of nucleosomes along DNA. The multi-subunit INO80 chromatin remodelling complex has a particular role in DNA repair. Here we present the cryo electron microscopy structures of the active core complex of human...

Descripción completa

Detalles Bibliográficos
Autores principales: Aramayo, Ricardo J., Willhoft, Oliver, Ayala, Rafael, Bythell-Douglas, Rohan, Wigley, Dale B., Zhang, Xiaodong
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5777635/
https://www.ncbi.nlm.nih.gov/pubmed/29323271
http://dx.doi.org/10.1038/s41594-017-0003-7
Descripción
Sumario:Access to chromatin for processes such as DNA repair and transcription requires the sliding of nucleosomes along DNA. The multi-subunit INO80 chromatin remodelling complex has a particular role in DNA repair. Here we present the cryo electron microscopy structures of the active core complex of human INO80 at 9.6 Å with portions at 4.1 Å resolution along with reconstructions of combinations of subunits. Together these structures reveal the architecture of the INO80 complex, including Ino80 and actin-related proteins, which is assembled around a single Tip49a (RUVBL1) and Tip49b (RUVBL2) AAA+ heterohexamer. An unusual spoked-wheel structural domain of the Ino80 subunit is engulfed by this heterohexamer and the intimate association of this Ino80 domain with the heterohexamer is at the core of the complex. We also identify a cleft in RUVBL1 and RUVBL2, which forms a major interaction site for partner proteins and likely communicates partner-interactions with its nucleotide binding sites.