Cargando…
Parallel PI3K, AKT and mTOR inhibition is required to control feedback loops that limit tumor therapy
Targeting the PI3K pathway has achieved limited success in cancer therapy. One reason for the disappointing activity of drugs that interfere with molecules that are important player in this pathway is the induction of multiple feedback loops that have been only partially understood. To understand th...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5777650/ https://www.ncbi.nlm.nih.gov/pubmed/29357370 http://dx.doi.org/10.1371/journal.pone.0190854 |
_version_ | 1783294220422873088 |
---|---|
author | Sathe, Anuja Chalaud, Géraldine Oppolzer, Immanuel Wong, Kit Yeng von Busch, Margarita Schmid, Sebastian C. Tong, Zhichao Retz, Margitta Gschwend, Juergen E. Schulz, Wolfgang A. Nawroth, Roman |
author_facet | Sathe, Anuja Chalaud, Géraldine Oppolzer, Immanuel Wong, Kit Yeng von Busch, Margarita Schmid, Sebastian C. Tong, Zhichao Retz, Margitta Gschwend, Juergen E. Schulz, Wolfgang A. Nawroth, Roman |
author_sort | Sathe, Anuja |
collection | PubMed |
description | Targeting the PI3K pathway has achieved limited success in cancer therapy. One reason for the disappointing activity of drugs that interfere with molecules that are important player in this pathway is the induction of multiple feedback loops that have been only partially understood. To understand these limitations and develop improved treatment strategies, we comprehensively characterized molecular mechanisms of PI3K pathway signaling in bladder cancer cell lines upon using small molecule inhibitors and RNAi technologies against all key molecules and protein complexes within the pathway and analyzed functional and molecular consequences. When targeting either mTORC1, mTOR, AKT or PI3K, only S6K1 phosphorylation was affected in most cell lines examined. Dephosphorylation of 4E-BP1 required combined inhibition of PI3K and mTORC1, independent from AKT, and resulted in a robust reduction in cell viability. Long-term inhibition of PI3K however resulted in a PDK1-dependent, PIP3 and mTORC2 independent rephosphorylation of AKT. AKT rephosphorylation could also be induced by mTOR or PDK1 inhibition. Combining PI3K/mTOR inhibitors with AKT or PDK1 inhibitors suppressed this rephosphorylation, induced apoptosis, decreased colony formation, cell viability and growth of tumor xenografts. Our findings reveal novel molecular mechanisms that explain the requirement for simultaneous targeting of PI3K, AKT and mTORC1 to achieve effective tumor growth inhibition. |
format | Online Article Text |
id | pubmed-5777650 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-57776502018-02-05 Parallel PI3K, AKT and mTOR inhibition is required to control feedback loops that limit tumor therapy Sathe, Anuja Chalaud, Géraldine Oppolzer, Immanuel Wong, Kit Yeng von Busch, Margarita Schmid, Sebastian C. Tong, Zhichao Retz, Margitta Gschwend, Juergen E. Schulz, Wolfgang A. Nawroth, Roman PLoS One Research Article Targeting the PI3K pathway has achieved limited success in cancer therapy. One reason for the disappointing activity of drugs that interfere with molecules that are important player in this pathway is the induction of multiple feedback loops that have been only partially understood. To understand these limitations and develop improved treatment strategies, we comprehensively characterized molecular mechanisms of PI3K pathway signaling in bladder cancer cell lines upon using small molecule inhibitors and RNAi technologies against all key molecules and protein complexes within the pathway and analyzed functional and molecular consequences. When targeting either mTORC1, mTOR, AKT or PI3K, only S6K1 phosphorylation was affected in most cell lines examined. Dephosphorylation of 4E-BP1 required combined inhibition of PI3K and mTORC1, independent from AKT, and resulted in a robust reduction in cell viability. Long-term inhibition of PI3K however resulted in a PDK1-dependent, PIP3 and mTORC2 independent rephosphorylation of AKT. AKT rephosphorylation could also be induced by mTOR or PDK1 inhibition. Combining PI3K/mTOR inhibitors with AKT or PDK1 inhibitors suppressed this rephosphorylation, induced apoptosis, decreased colony formation, cell viability and growth of tumor xenografts. Our findings reveal novel molecular mechanisms that explain the requirement for simultaneous targeting of PI3K, AKT and mTORC1 to achieve effective tumor growth inhibition. Public Library of Science 2018-01-22 /pmc/articles/PMC5777650/ /pubmed/29357370 http://dx.doi.org/10.1371/journal.pone.0190854 Text en © 2018 Sathe et al http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Article Sathe, Anuja Chalaud, Géraldine Oppolzer, Immanuel Wong, Kit Yeng von Busch, Margarita Schmid, Sebastian C. Tong, Zhichao Retz, Margitta Gschwend, Juergen E. Schulz, Wolfgang A. Nawroth, Roman Parallel PI3K, AKT and mTOR inhibition is required to control feedback loops that limit tumor therapy |
title | Parallel PI3K, AKT and mTOR inhibition is required to control feedback loops that limit tumor therapy |
title_full | Parallel PI3K, AKT and mTOR inhibition is required to control feedback loops that limit tumor therapy |
title_fullStr | Parallel PI3K, AKT and mTOR inhibition is required to control feedback loops that limit tumor therapy |
title_full_unstemmed | Parallel PI3K, AKT and mTOR inhibition is required to control feedback loops that limit tumor therapy |
title_short | Parallel PI3K, AKT and mTOR inhibition is required to control feedback loops that limit tumor therapy |
title_sort | parallel pi3k, akt and mtor inhibition is required to control feedback loops that limit tumor therapy |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5777650/ https://www.ncbi.nlm.nih.gov/pubmed/29357370 http://dx.doi.org/10.1371/journal.pone.0190854 |
work_keys_str_mv | AT satheanuja parallelpi3kaktandmtorinhibitionisrequiredtocontrolfeedbackloopsthatlimittumortherapy AT chalaudgeraldine parallelpi3kaktandmtorinhibitionisrequiredtocontrolfeedbackloopsthatlimittumortherapy AT oppolzerimmanuel parallelpi3kaktandmtorinhibitionisrequiredtocontrolfeedbackloopsthatlimittumortherapy AT wongkityeng parallelpi3kaktandmtorinhibitionisrequiredtocontrolfeedbackloopsthatlimittumortherapy AT vonbuschmargarita parallelpi3kaktandmtorinhibitionisrequiredtocontrolfeedbackloopsthatlimittumortherapy AT schmidsebastianc parallelpi3kaktandmtorinhibitionisrequiredtocontrolfeedbackloopsthatlimittumortherapy AT tongzhichao parallelpi3kaktandmtorinhibitionisrequiredtocontrolfeedbackloopsthatlimittumortherapy AT retzmargitta parallelpi3kaktandmtorinhibitionisrequiredtocontrolfeedbackloopsthatlimittumortherapy AT gschwendjuergene parallelpi3kaktandmtorinhibitionisrequiredtocontrolfeedbackloopsthatlimittumortherapy AT schulzwolfganga parallelpi3kaktandmtorinhibitionisrequiredtocontrolfeedbackloopsthatlimittumortherapy AT nawrothroman parallelpi3kaktandmtorinhibitionisrequiredtocontrolfeedbackloopsthatlimittumortherapy |