Cargando…
Nature of the low magnetization decay on stacks of second generation superconducting tapes under crossed and rotating magnetic field experiments
The extremely low decay factor on the trapped magnetic field by stacks of second-generation high-temperature superconducting tapes reported in Appl. Phys. Lett. 104, 232602 (2014), is in apparent contradiction with the classical results for the demagnetization of superconducting bulks and thin films...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5778014/ https://www.ncbi.nlm.nih.gov/pubmed/29358743 http://dx.doi.org/10.1038/s41598-018-19681-8 |
Sumario: | The extremely low decay factor on the trapped magnetic field by stacks of second-generation high-temperature superconducting tapes reported in Appl. Phys. Lett. 104, 232602 (2014), is in apparent contradiction with the classical results for the demagnetization of superconducting bulks and thin films, where the samples undergo a severe and progressive decay under crossed magnetic field conditions. Nevertheless, in this paper, we demonstrate how the theoretical approaches and experimental measurements on superconducting bulks, thin films, and stacks of superconducting tapes can be reconciled, not only under the crossed field configuration but also under rotating magnetic field conditions, by showing that the stacks of commercial tapes behave as a system of electrically unconnected layers preventing the deformation of profiles of current along its external contour. This study extends up to the consideration of using novel superconducting/ferromagnetic metastructures, where soft ferromagnetic films are interlayered, reporting a further reduction on the magnetization decay of about 50% in the crossed field configuration. Remarkably, after applying the same number of cycles either of rotating or crossed magnetic field to these metastructures, the difference between the magnetization decay is found to be negligible, what demonstrates their highly superior performance when compared to conventional stacks of superconducting tapes. |
---|