Cargando…
Gene annotation bias impedes biomedical research
We found tremendous inequality across gene and protein annotation resources. We observed that this bias leads biomedical researchers to focus on richly annotated genes instead of those with the strongest molecular data. We advocate that researchers reduce these biases by pursuing data-driven hypothe...
Autores principales: | Haynes, Winston A., Tomczak, Aurelie, Khatri, Purvesh |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5778030/ https://www.ncbi.nlm.nih.gov/pubmed/29358745 http://dx.doi.org/10.1038/s41598-018-19333-x |
Ejemplares similares
-
Interpretation of biological experiments changes with evolution of the Gene Ontology and its annotations
por: Tomczak, Aurelie, et al.
Publicado: (2018) -
Methods to increase reproducibility in differential gene expression via meta-analysis
por: Sweeney, Timothy E., et al.
Publicado: (2017) -
Leveraging heterogeneity across multiple datasets increases cell-mixture deconvolution accuracy and reduces biological and technical biases
por: Vallania, Francesco, et al.
Publicado: (2018) -
Recommending MeSH terms for annotating biomedical articles
por: Huang, Minlie, et al.
Publicado: (2011) -
The Open Biomedical Annotator
por: Jonquet, Clement, et al.
Publicado: (2009)