Cargando…

Proteomic evidences for microcystin-RR-induced toxicological alterations in mice liver

This study deals with the isolation and purification of an important variant of microcystins namely microcystin-RR (MCYST-RR) from Microcystis aeruginosa and reports its effects on mice liver protein profile and cellular functions. Protein profiling by 2-dimensional gel electrophoresis revealed chan...

Descripción completa

Detalles Bibliográficos
Autores principales: Rai, Ashutosh Kumar, Chaturvedi, Rupesh, Kumar, Ashok
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5778043/
https://www.ncbi.nlm.nih.gov/pubmed/29358693
http://dx.doi.org/10.1038/s41598-018-19299-w
Descripción
Sumario:This study deals with the isolation and purification of an important variant of microcystins namely microcystin-RR (MCYST-RR) from Microcystis aeruginosa and reports its effects on mice liver protein profile and cellular functions. Protein profiling by 2-dimensional gel electrophoresis revealed changes in the number and accumulation of protein spots in liver of mice treated with different concentrations of MCYST-RR. Untreated (control) mice liver showed 368 protein spots while the number was 355, 348 and 332 in liver of mice treated with 200, 300 and 400 µg kg body wt(−1) of MCYST-RR respectively. Altogether 102, 97, and 92 spots were differentially up-accumulated and 93, 91, and 87 spots were down- accumulated respectively with the treatment of 200, 300, 400 µg kg body wt(−1). Eighteen differentially accumulated proteins present in all the four conditions were identified by MALDI-TOF MS. Of these eighteen proteins, 12 appeared to be involved in apoptosis/toxicological manifestations. Pathway analysis by Reactome and PANTHER database also mapped the identified proteins to programmed cell death/apoptosis clade. That MCYST-RR induces apoptosis in liver tissues was also confirmed by DNA fragmentation assay. Results of this study elucidate the proteomic basis for the hepatotoxicity of MCYST-RR which is otherwise poorly understood till date.