Cargando…
Specific microRNA signatures responsible for immune disturbance related to hip fracture in aged rats
BACKGROUND: Hip fracture is commonly associated with an overwhelming inflammatory response, which may lead to high rates of morbidity and mortality in the elderly. MicroRNAs (miRNAs) play important roles in the functions of immune system. However, the association between miRNA dysregulation and immu...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5778820/ https://www.ncbi.nlm.nih.gov/pubmed/29357879 http://dx.doi.org/10.1186/s13018-018-0721-5 |
Sumario: | BACKGROUND: Hip fracture is commonly associated with an overwhelming inflammatory response, which may lead to high rates of morbidity and mortality in the elderly. MicroRNAs (miRNAs) play important roles in the functions of immune system. However, the association between miRNA dysregulation and immune disturbance (IMD) related to elderly hip fracture is largely unknown. METHODS: In this study, microarray profiling was carried out to evaluate the differential expression patterns of miRNAs in plasma of the aged hip fracture rats with IMD, those without IMD, and normal aged rats, followed by validation using quantitative real-time reverse transcription polymerase chain reaction (qRT-PCR). Genes and signaling pathways of the dysregulated miRNAs related to elderly hip fracture-induced IMD were investigated in silico using Gene Ontology and analysis of Kyoto Encyclopedia of Genes or Genomes. RESULTS: Dead or moribund rats with hip fracture exhibited significantly reduced TNF-α/IL-10 ratio compared with healthy controls and other hip fracture rats, which were therefore named as hip fracture rats with IMD. Seven serum miRNAs in hip fracture rats with IMD were significantly downregulated. qRT-PCR and in silico analysis revealed that miR-130a-3p likely participated in regulating the hip fracture-induced IMD. Furthermore, Western blot experiment demonstrated that in lung tissue, the reduction of miR-130a-3p was accompanied with the increase of the protein expression of interferon regulatory factor-1 (IRF1) and sphingosine-1-phosphate receptor 1 (SIPR1). CONCLUSIONS: miR-130a-3p desregulation may be associated with elderly hip fracture-induced IMD, which might act as a new potential biomarker for the diagnosis and prognosis of elderly hip fracture-induced IMD and a potential therapeutic target as well. |
---|