Cargando…
The New York Head—A precise standardized volume conductor model for EEG source localization and tES targeting
In source localization of electroencephalograpic (EEG) signals, as well as in targeted transcranial electric current stimulation (tES), a volume conductor model is required to describe the flow of electric currents in the head. Boundary element models (BEM) can be readily computed to represent major...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5778879/ https://www.ncbi.nlm.nih.gov/pubmed/26706450 http://dx.doi.org/10.1016/j.neuroimage.2015.12.019 |
_version_ | 1783294440226422784 |
---|---|
author | Huang, Yu Parra, Lucas C. Haufe, Stefan |
author_facet | Huang, Yu Parra, Lucas C. Haufe, Stefan |
author_sort | Huang, Yu |
collection | PubMed |
description | In source localization of electroencephalograpic (EEG) signals, as well as in targeted transcranial electric current stimulation (tES), a volume conductor model is required to describe the flow of electric currents in the head. Boundary element models (BEM) can be readily computed to represent major tissue compartments, but cannot encode detailed anatomical information within compartments. Finite element models (FEM) can capture more tissue types and intricate anatomical structures, but with the higher precision also comes the need for semiautomated segmentation, and a higher computational cost. In either case, adjusting to the individual human anatomy requires costly magnetic resonance imaging (MRI), and thus head modeling is often based on the anatomy of an ‘arbitrary’ individual (e.g. Colin27). Additionally, existing reference models for the human head often do not include the cerebrospinal fluid (CSF), and their field of view excludes portions of the head and neck—two factors that demonstrably affect current-flow patterns. Here we present a highly detailed FEM, which we call ICBM-NY, or “New York Head”. It is based on the ICBM152 anatomical template (a non-linear average of the MRI of 152 adult human brains) defined in MNI coordinates, for which we extended the field of view to the neck and performed a detailed segmentation of six tissue types (scalp, skull, CSF, gray matter, white matter, air cavities) at 0.5 mm (3) resolution. The model was solved for 231 electrode locations. To evaluate its performance, additional FEMs and BEMs were constructed for four individual subjects. Each of the four individual FEMs (regarded as the ‘ground truth’) is compared to its BEM counterpart, the ICBM-NY, a BEM of the ICBM anatomy, an ‘individualized’ BEM of the ICBM anatomy warped to the individual head surface, and FEMs of the other individuals. Performance is measured in terms of EEG source localization and tES targeting errors. Results show that the ICBM-NY outperforms FEMs of mismatched individual anatomies as well as the BEM of the ICBM anatomy according to both criteria. We therefore propose the New York Head as a new standard head model to be used in future EEG and tES studies whenever an individual MRI is not available. We release all model data online at neuralengr.com/nyhead/ to facilitate broad adoption. |
format | Online Article Text |
id | pubmed-5778879 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2015 |
record_format | MEDLINE/PubMed |
spelling | pubmed-57788792018-01-23 The New York Head—A precise standardized volume conductor model for EEG source localization and tES targeting Huang, Yu Parra, Lucas C. Haufe, Stefan Neuroimage Article In source localization of electroencephalograpic (EEG) signals, as well as in targeted transcranial electric current stimulation (tES), a volume conductor model is required to describe the flow of electric currents in the head. Boundary element models (BEM) can be readily computed to represent major tissue compartments, but cannot encode detailed anatomical information within compartments. Finite element models (FEM) can capture more tissue types and intricate anatomical structures, but with the higher precision also comes the need for semiautomated segmentation, and a higher computational cost. In either case, adjusting to the individual human anatomy requires costly magnetic resonance imaging (MRI), and thus head modeling is often based on the anatomy of an ‘arbitrary’ individual (e.g. Colin27). Additionally, existing reference models for the human head often do not include the cerebrospinal fluid (CSF), and their field of view excludes portions of the head and neck—two factors that demonstrably affect current-flow patterns. Here we present a highly detailed FEM, which we call ICBM-NY, or “New York Head”. It is based on the ICBM152 anatomical template (a non-linear average of the MRI of 152 adult human brains) defined in MNI coordinates, for which we extended the field of view to the neck and performed a detailed segmentation of six tissue types (scalp, skull, CSF, gray matter, white matter, air cavities) at 0.5 mm (3) resolution. The model was solved for 231 electrode locations. To evaluate its performance, additional FEMs and BEMs were constructed for four individual subjects. Each of the four individual FEMs (regarded as the ‘ground truth’) is compared to its BEM counterpart, the ICBM-NY, a BEM of the ICBM anatomy, an ‘individualized’ BEM of the ICBM anatomy warped to the individual head surface, and FEMs of the other individuals. Performance is measured in terms of EEG source localization and tES targeting errors. Results show that the ICBM-NY outperforms FEMs of mismatched individual anatomies as well as the BEM of the ICBM anatomy according to both criteria. We therefore propose the New York Head as a new standard head model to be used in future EEG and tES studies whenever an individual MRI is not available. We release all model data online at neuralengr.com/nyhead/ to facilitate broad adoption. 2015-12-17 2016-10-15 /pmc/articles/PMC5778879/ /pubmed/26706450 http://dx.doi.org/10.1016/j.neuroimage.2015.12.019 Text en http://creativecommons.org/licenses/by/4.0/ This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Huang, Yu Parra, Lucas C. Haufe, Stefan The New York Head—A precise standardized volume conductor model for EEG source localization and tES targeting |
title | The New York Head—A precise standardized volume conductor model for EEG source localization and tES targeting |
title_full | The New York Head—A precise standardized volume conductor model for EEG source localization and tES targeting |
title_fullStr | The New York Head—A precise standardized volume conductor model for EEG source localization and tES targeting |
title_full_unstemmed | The New York Head—A precise standardized volume conductor model for EEG source localization and tES targeting |
title_short | The New York Head—A precise standardized volume conductor model for EEG source localization and tES targeting |
title_sort | new york head—a precise standardized volume conductor model for eeg source localization and tes targeting |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5778879/ https://www.ncbi.nlm.nih.gov/pubmed/26706450 http://dx.doi.org/10.1016/j.neuroimage.2015.12.019 |
work_keys_str_mv | AT huangyu thenewyorkheadaprecisestandardizedvolumeconductormodelforeegsourcelocalizationandtestargeting AT parralucasc thenewyorkheadaprecisestandardizedvolumeconductormodelforeegsourcelocalizationandtestargeting AT haufestefan thenewyorkheadaprecisestandardizedvolumeconductormodelforeegsourcelocalizationandtestargeting AT huangyu newyorkheadaprecisestandardizedvolumeconductormodelforeegsourcelocalizationandtestargeting AT parralucasc newyorkheadaprecisestandardizedvolumeconductormodelforeegsourcelocalizationandtestargeting AT haufestefan newyorkheadaprecisestandardizedvolumeconductormodelforeegsourcelocalizationandtestargeting |