Cargando…

A quantitative theory of gamma synchronization in macaque V1

Gamma-band synchronization coordinates brief periods of excitability in oscillating neuronal populations to optimize information transmission during sensation and cognition. Commonly, a stable, shared frequency over time is considered a condition for functional neural synchronization. Here, we demon...

Descripción completa

Detalles Bibliográficos
Autores principales: Lowet, Eric, Roberts, Mark J, Peter, Alina, Gips, Bart, De Weerd, Peter
Formato: Online Artículo Texto
Lenguaje:English
Publicado: eLife Sciences Publications, Ltd 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5779232/
https://www.ncbi.nlm.nih.gov/pubmed/28857743
http://dx.doi.org/10.7554/eLife.26642
_version_ 1783294499203579904
author Lowet, Eric
Roberts, Mark J
Peter, Alina
Gips, Bart
De Weerd, Peter
author_facet Lowet, Eric
Roberts, Mark J
Peter, Alina
Gips, Bart
De Weerd, Peter
author_sort Lowet, Eric
collection PubMed
description Gamma-band synchronization coordinates brief periods of excitability in oscillating neuronal populations to optimize information transmission during sensation and cognition. Commonly, a stable, shared frequency over time is considered a condition for functional neural synchronization. Here, we demonstrate the opposite: instantaneous frequency modulations are critical to regulate phase relations and synchronization. In monkey visual area V1, nearby local populations driven by different visual stimulation showed different gamma frequencies. When similar enough, these frequencies continually attracted and repulsed each other, which enabled preferred phase relations to be maintained in periods of minimized frequency difference. Crucially, the precise dynamics of frequencies and phases across a wide range of stimulus conditions was predicted from a physics theory that describes how weakly coupled oscillators influence each other’s phase relations. Hence, the fundamental mathematical principle of synchronization through instantaneous frequency modulations applies to gamma in V1 and is likely generalizable to other brain regions and rhythms.
format Online
Article
Text
id pubmed-5779232
institution National Center for Biotechnology Information
language English
publishDate 2017
publisher eLife Sciences Publications, Ltd
record_format MEDLINE/PubMed
spelling pubmed-57792322018-01-25 A quantitative theory of gamma synchronization in macaque V1 Lowet, Eric Roberts, Mark J Peter, Alina Gips, Bart De Weerd, Peter eLife Neuroscience Gamma-band synchronization coordinates brief periods of excitability in oscillating neuronal populations to optimize information transmission during sensation and cognition. Commonly, a stable, shared frequency over time is considered a condition for functional neural synchronization. Here, we demonstrate the opposite: instantaneous frequency modulations are critical to regulate phase relations and synchronization. In monkey visual area V1, nearby local populations driven by different visual stimulation showed different gamma frequencies. When similar enough, these frequencies continually attracted and repulsed each other, which enabled preferred phase relations to be maintained in periods of minimized frequency difference. Crucially, the precise dynamics of frequencies and phases across a wide range of stimulus conditions was predicted from a physics theory that describes how weakly coupled oscillators influence each other’s phase relations. Hence, the fundamental mathematical principle of synchronization through instantaneous frequency modulations applies to gamma in V1 and is likely generalizable to other brain regions and rhythms. eLife Sciences Publications, Ltd 2017-08-31 /pmc/articles/PMC5779232/ /pubmed/28857743 http://dx.doi.org/10.7554/eLife.26642 Text en © 2017, Lowet et al http://creativecommons.org/licenses/by/4.0/ http://creativecommons.org/licenses/by/4.0/This article is distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use and redistribution provided that the original author and source are credited.
spellingShingle Neuroscience
Lowet, Eric
Roberts, Mark J
Peter, Alina
Gips, Bart
De Weerd, Peter
A quantitative theory of gamma synchronization in macaque V1
title A quantitative theory of gamma synchronization in macaque V1
title_full A quantitative theory of gamma synchronization in macaque V1
title_fullStr A quantitative theory of gamma synchronization in macaque V1
title_full_unstemmed A quantitative theory of gamma synchronization in macaque V1
title_short A quantitative theory of gamma synchronization in macaque V1
title_sort quantitative theory of gamma synchronization in macaque v1
topic Neuroscience
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5779232/
https://www.ncbi.nlm.nih.gov/pubmed/28857743
http://dx.doi.org/10.7554/eLife.26642
work_keys_str_mv AT loweteric aquantitativetheoryofgammasynchronizationinmacaquev1
AT robertsmarkj aquantitativetheoryofgammasynchronizationinmacaquev1
AT peteralina aquantitativetheoryofgammasynchronizationinmacaquev1
AT gipsbart aquantitativetheoryofgammasynchronizationinmacaquev1
AT deweerdpeter aquantitativetheoryofgammasynchronizationinmacaquev1
AT loweteric quantitativetheoryofgammasynchronizationinmacaquev1
AT robertsmarkj quantitativetheoryofgammasynchronizationinmacaquev1
AT peteralina quantitativetheoryofgammasynchronizationinmacaquev1
AT gipsbart quantitativetheoryofgammasynchronizationinmacaquev1
AT deweerdpeter quantitativetheoryofgammasynchronizationinmacaquev1