Cargando…
A quantitative theory of gamma synchronization in macaque V1
Gamma-band synchronization coordinates brief periods of excitability in oscillating neuronal populations to optimize information transmission during sensation and cognition. Commonly, a stable, shared frequency over time is considered a condition for functional neural synchronization. Here, we demon...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
eLife Sciences Publications, Ltd
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5779232/ https://www.ncbi.nlm.nih.gov/pubmed/28857743 http://dx.doi.org/10.7554/eLife.26642 |
_version_ | 1783294499203579904 |
---|---|
author | Lowet, Eric Roberts, Mark J Peter, Alina Gips, Bart De Weerd, Peter |
author_facet | Lowet, Eric Roberts, Mark J Peter, Alina Gips, Bart De Weerd, Peter |
author_sort | Lowet, Eric |
collection | PubMed |
description | Gamma-band synchronization coordinates brief periods of excitability in oscillating neuronal populations to optimize information transmission during sensation and cognition. Commonly, a stable, shared frequency over time is considered a condition for functional neural synchronization. Here, we demonstrate the opposite: instantaneous frequency modulations are critical to regulate phase relations and synchronization. In monkey visual area V1, nearby local populations driven by different visual stimulation showed different gamma frequencies. When similar enough, these frequencies continually attracted and repulsed each other, which enabled preferred phase relations to be maintained in periods of minimized frequency difference. Crucially, the precise dynamics of frequencies and phases across a wide range of stimulus conditions was predicted from a physics theory that describes how weakly coupled oscillators influence each other’s phase relations. Hence, the fundamental mathematical principle of synchronization through instantaneous frequency modulations applies to gamma in V1 and is likely generalizable to other brain regions and rhythms. |
format | Online Article Text |
id | pubmed-5779232 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | eLife Sciences Publications, Ltd |
record_format | MEDLINE/PubMed |
spelling | pubmed-57792322018-01-25 A quantitative theory of gamma synchronization in macaque V1 Lowet, Eric Roberts, Mark J Peter, Alina Gips, Bart De Weerd, Peter eLife Neuroscience Gamma-band synchronization coordinates brief periods of excitability in oscillating neuronal populations to optimize information transmission during sensation and cognition. Commonly, a stable, shared frequency over time is considered a condition for functional neural synchronization. Here, we demonstrate the opposite: instantaneous frequency modulations are critical to regulate phase relations and synchronization. In monkey visual area V1, nearby local populations driven by different visual stimulation showed different gamma frequencies. When similar enough, these frequencies continually attracted and repulsed each other, which enabled preferred phase relations to be maintained in periods of minimized frequency difference. Crucially, the precise dynamics of frequencies and phases across a wide range of stimulus conditions was predicted from a physics theory that describes how weakly coupled oscillators influence each other’s phase relations. Hence, the fundamental mathematical principle of synchronization through instantaneous frequency modulations applies to gamma in V1 and is likely generalizable to other brain regions and rhythms. eLife Sciences Publications, Ltd 2017-08-31 /pmc/articles/PMC5779232/ /pubmed/28857743 http://dx.doi.org/10.7554/eLife.26642 Text en © 2017, Lowet et al http://creativecommons.org/licenses/by/4.0/ http://creativecommons.org/licenses/by/4.0/This article is distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use and redistribution provided that the original author and source are credited. |
spellingShingle | Neuroscience Lowet, Eric Roberts, Mark J Peter, Alina Gips, Bart De Weerd, Peter A quantitative theory of gamma synchronization in macaque V1 |
title | A quantitative theory of gamma synchronization in macaque V1 |
title_full | A quantitative theory of gamma synchronization in macaque V1 |
title_fullStr | A quantitative theory of gamma synchronization in macaque V1 |
title_full_unstemmed | A quantitative theory of gamma synchronization in macaque V1 |
title_short | A quantitative theory of gamma synchronization in macaque V1 |
title_sort | quantitative theory of gamma synchronization in macaque v1 |
topic | Neuroscience |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5779232/ https://www.ncbi.nlm.nih.gov/pubmed/28857743 http://dx.doi.org/10.7554/eLife.26642 |
work_keys_str_mv | AT loweteric aquantitativetheoryofgammasynchronizationinmacaquev1 AT robertsmarkj aquantitativetheoryofgammasynchronizationinmacaquev1 AT peteralina aquantitativetheoryofgammasynchronizationinmacaquev1 AT gipsbart aquantitativetheoryofgammasynchronizationinmacaquev1 AT deweerdpeter aquantitativetheoryofgammasynchronizationinmacaquev1 AT loweteric quantitativetheoryofgammasynchronizationinmacaquev1 AT robertsmarkj quantitativetheoryofgammasynchronizationinmacaquev1 AT peteralina quantitativetheoryofgammasynchronizationinmacaquev1 AT gipsbart quantitativetheoryofgammasynchronizationinmacaquev1 AT deweerdpeter quantitativetheoryofgammasynchronizationinmacaquev1 |