Cargando…

Conversion of levoglucosan and cellobiosan by Pseudomonas putida KT2440

Pyrolysis offers a straightforward approach for the deconstruction of plant cell wall polymers into bio-oil. Recently, there has been substantial interest in bio-oil fractionation and subsequent use of biological approaches to selectively upgrade some of the resulting fractions. A fraction of partic...

Descripción completa

Detalles Bibliográficos
Autores principales: Linger, Jeffrey G., Hobdey, Sarah E., Franden, Mary Ann, Fulk, Emily M., Beckham, Gregg T.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5779712/
https://www.ncbi.nlm.nih.gov/pubmed/29468111
http://dx.doi.org/10.1016/j.meteno.2016.01.005
_version_ 1783294593927741440
author Linger, Jeffrey G.
Hobdey, Sarah E.
Franden, Mary Ann
Fulk, Emily M.
Beckham, Gregg T.
author_facet Linger, Jeffrey G.
Hobdey, Sarah E.
Franden, Mary Ann
Fulk, Emily M.
Beckham, Gregg T.
author_sort Linger, Jeffrey G.
collection PubMed
description Pyrolysis offers a straightforward approach for the deconstruction of plant cell wall polymers into bio-oil. Recently, there has been substantial interest in bio-oil fractionation and subsequent use of biological approaches to selectively upgrade some of the resulting fractions. A fraction of particular interest for biological upgrading consists of polysaccharide-derived substrates including sugars and sugar dehydration products such as levoglucosan and cellobiosan, which are two of the most abundant pyrolysis products of cellulose. Levoglucosan can be converted to glucose-6-phosphate through the use of a levoglucosan kinase (LGK), but to date, the mechanism for cellobiosan utilization has not been demonstrated. Here, we engineer the microbe Pseudomonas putida KT2440 to use levoglucosan as a sole carbon and energy source through LGK integration. Moreover, we demonstrate that cellobiosan can be enzymatically converted to levoglucosan and glucose with β-glucosidase enzymes from both Glycoside Hydrolase Family 1 and Family 3. β-glucosidases are commonly used in both natural and industrial cellulase cocktails to convert cellobiose to glucose to relieve cellulase product inhibition and to facilitate microbial uptake of glucose. Using an exogenous β-glucosidase, we demonstrate that the engineered strain of P. putida can grow on levoglucosan up to 60 g/L and can also utilize cellobiosan. Overall, this study elucidates the biological pathway to co-utilize levoglucosan and cellobiosan, which will be a key transformation for the biological upgrading of pyrolysis-derived substrates.
format Online
Article
Text
id pubmed-5779712
institution National Center for Biotechnology Information
language English
publishDate 2016
publisher Elsevier
record_format MEDLINE/PubMed
spelling pubmed-57797122018-02-21 Conversion of levoglucosan and cellobiosan by Pseudomonas putida KT2440 Linger, Jeffrey G. Hobdey, Sarah E. Franden, Mary Ann Fulk, Emily M. Beckham, Gregg T. Metab Eng Commun Article Pyrolysis offers a straightforward approach for the deconstruction of plant cell wall polymers into bio-oil. Recently, there has been substantial interest in bio-oil fractionation and subsequent use of biological approaches to selectively upgrade some of the resulting fractions. A fraction of particular interest for biological upgrading consists of polysaccharide-derived substrates including sugars and sugar dehydration products such as levoglucosan and cellobiosan, which are two of the most abundant pyrolysis products of cellulose. Levoglucosan can be converted to glucose-6-phosphate through the use of a levoglucosan kinase (LGK), but to date, the mechanism for cellobiosan utilization has not been demonstrated. Here, we engineer the microbe Pseudomonas putida KT2440 to use levoglucosan as a sole carbon and energy source through LGK integration. Moreover, we demonstrate that cellobiosan can be enzymatically converted to levoglucosan and glucose with β-glucosidase enzymes from both Glycoside Hydrolase Family 1 and Family 3. β-glucosidases are commonly used in both natural and industrial cellulase cocktails to convert cellobiose to glucose to relieve cellulase product inhibition and to facilitate microbial uptake of glucose. Using an exogenous β-glucosidase, we demonstrate that the engineered strain of P. putida can grow on levoglucosan up to 60 g/L and can also utilize cellobiosan. Overall, this study elucidates the biological pathway to co-utilize levoglucosan and cellobiosan, which will be a key transformation for the biological upgrading of pyrolysis-derived substrates. Elsevier 2016-02-02 /pmc/articles/PMC5779712/ /pubmed/29468111 http://dx.doi.org/10.1016/j.meteno.2016.01.005 Text en © 2016 The Authors http://creativecommons.org/licenses/by-nc-nd/4.0/ This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
spellingShingle Article
Linger, Jeffrey G.
Hobdey, Sarah E.
Franden, Mary Ann
Fulk, Emily M.
Beckham, Gregg T.
Conversion of levoglucosan and cellobiosan by Pseudomonas putida KT2440
title Conversion of levoglucosan and cellobiosan by Pseudomonas putida KT2440
title_full Conversion of levoglucosan and cellobiosan by Pseudomonas putida KT2440
title_fullStr Conversion of levoglucosan and cellobiosan by Pseudomonas putida KT2440
title_full_unstemmed Conversion of levoglucosan and cellobiosan by Pseudomonas putida KT2440
title_short Conversion of levoglucosan and cellobiosan by Pseudomonas putida KT2440
title_sort conversion of levoglucosan and cellobiosan by pseudomonas putida kt2440
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5779712/
https://www.ncbi.nlm.nih.gov/pubmed/29468111
http://dx.doi.org/10.1016/j.meteno.2016.01.005
work_keys_str_mv AT lingerjeffreyg conversionoflevoglucosanandcellobiosanbypseudomonasputidakt2440
AT hobdeysarahe conversionoflevoglucosanandcellobiosanbypseudomonasputidakt2440
AT frandenmaryann conversionoflevoglucosanandcellobiosanbypseudomonasputidakt2440
AT fulkemilym conversionoflevoglucosanandcellobiosanbypseudomonasputidakt2440
AT beckhamgreggt conversionoflevoglucosanandcellobiosanbypseudomonasputidakt2440