Cargando…

Acidithiobacillus ferrooxidans's comprehensive model driven analysis of the electron transfer metabolism and synthetic strain design for biomining applications

Acidithiobacillus ferrooxidans is a gram-negative chemolithoautotrophic γ-proteobacterium. It typically grows at an external pH of 2 using the oxidation of ferrous ions by oxygen, producing ferric ions and water, while fixing carbon dioxide from the environment. A. ferrooxidans is of great interest...

Descripción completa

Detalles Bibliográficos
Autores principales: Campodonico, Miguel A., Vaisman, Daniela, Castro, Jean F., Razmilic, Valeria, Mercado, Francesca, Andrews, Barbara A., Feist, Adam M., Asenjo, Juan A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5779729/
https://www.ncbi.nlm.nih.gov/pubmed/29468116
http://dx.doi.org/10.1016/j.meteno.2016.03.003
_version_ 1783294597899747328
author Campodonico, Miguel A.
Vaisman, Daniela
Castro, Jean F.
Razmilic, Valeria
Mercado, Francesca
Andrews, Barbara A.
Feist, Adam M.
Asenjo, Juan A.
author_facet Campodonico, Miguel A.
Vaisman, Daniela
Castro, Jean F.
Razmilic, Valeria
Mercado, Francesca
Andrews, Barbara A.
Feist, Adam M.
Asenjo, Juan A.
author_sort Campodonico, Miguel A.
collection PubMed
description Acidithiobacillus ferrooxidans is a gram-negative chemolithoautotrophic γ-proteobacterium. It typically grows at an external pH of 2 using the oxidation of ferrous ions by oxygen, producing ferric ions and water, while fixing carbon dioxide from the environment. A. ferrooxidans is of great interest for biomining and environmental applications, as it can process mineral ores and alleviate the negative environmental consequences derived from the mining processes. In this study, the first genome-scale metabolic reconstruction of A. ferrooxidans ATCC 23270 was generated (iMC507). A total of 587 metabolic and transport/exchange reactions, 507 genes and 573 metabolites organized in over 42 subsystems were incorporated into the model. Based on a new genetic algorithm approach, that integrates flux balance analysis, chemiosmotic theory, and physiological data, the proton translocation stoichiometry for a number of enzymes and maintenance parameters under aerobic chemolithoautotrophic conditions using three different electron donors were estimated. Furthermore, a detailed electron transfer and carbon flux distributions during chemolithoautotrophic growth using ferrous ion, tetrathionate and thiosulfate were determined and reported. Finally, 134 growth-coupled designs were calculated that enables Extracellular Polysaccharide production. iMC507 serves as a knowledgebase for summarizing and categorizing the information currently available for A. ferrooxidans and enables the understanding and engineering of Acidithiobacillus and similar species from a comprehensive model-driven perspective for biomining applications.
format Online
Article
Text
id pubmed-5779729
institution National Center for Biotechnology Information
language English
publishDate 2016
publisher Elsevier
record_format MEDLINE/PubMed
spelling pubmed-57797292018-02-21 Acidithiobacillus ferrooxidans's comprehensive model driven analysis of the electron transfer metabolism and synthetic strain design for biomining applications Campodonico, Miguel A. Vaisman, Daniela Castro, Jean F. Razmilic, Valeria Mercado, Francesca Andrews, Barbara A. Feist, Adam M. Asenjo, Juan A. Metab Eng Commun Article Acidithiobacillus ferrooxidans is a gram-negative chemolithoautotrophic γ-proteobacterium. It typically grows at an external pH of 2 using the oxidation of ferrous ions by oxygen, producing ferric ions and water, while fixing carbon dioxide from the environment. A. ferrooxidans is of great interest for biomining and environmental applications, as it can process mineral ores and alleviate the negative environmental consequences derived from the mining processes. In this study, the first genome-scale metabolic reconstruction of A. ferrooxidans ATCC 23270 was generated (iMC507). A total of 587 metabolic and transport/exchange reactions, 507 genes and 573 metabolites organized in over 42 subsystems were incorporated into the model. Based on a new genetic algorithm approach, that integrates flux balance analysis, chemiosmotic theory, and physiological data, the proton translocation stoichiometry for a number of enzymes and maintenance parameters under aerobic chemolithoautotrophic conditions using three different electron donors were estimated. Furthermore, a detailed electron transfer and carbon flux distributions during chemolithoautotrophic growth using ferrous ion, tetrathionate and thiosulfate were determined and reported. Finally, 134 growth-coupled designs were calculated that enables Extracellular Polysaccharide production. iMC507 serves as a knowledgebase for summarizing and categorizing the information currently available for A. ferrooxidans and enables the understanding and engineering of Acidithiobacillus and similar species from a comprehensive model-driven perspective for biomining applications. Elsevier 2016-03-19 /pmc/articles/PMC5779729/ /pubmed/29468116 http://dx.doi.org/10.1016/j.meteno.2016.03.003 Text en © 2016 The Authors http://creativecommons.org/licenses/by-nc-nd/4.0/ This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
spellingShingle Article
Campodonico, Miguel A.
Vaisman, Daniela
Castro, Jean F.
Razmilic, Valeria
Mercado, Francesca
Andrews, Barbara A.
Feist, Adam M.
Asenjo, Juan A.
Acidithiobacillus ferrooxidans's comprehensive model driven analysis of the electron transfer metabolism and synthetic strain design for biomining applications
title Acidithiobacillus ferrooxidans's comprehensive model driven analysis of the electron transfer metabolism and synthetic strain design for biomining applications
title_full Acidithiobacillus ferrooxidans's comprehensive model driven analysis of the electron transfer metabolism and synthetic strain design for biomining applications
title_fullStr Acidithiobacillus ferrooxidans's comprehensive model driven analysis of the electron transfer metabolism and synthetic strain design for biomining applications
title_full_unstemmed Acidithiobacillus ferrooxidans's comprehensive model driven analysis of the electron transfer metabolism and synthetic strain design for biomining applications
title_short Acidithiobacillus ferrooxidans's comprehensive model driven analysis of the electron transfer metabolism and synthetic strain design for biomining applications
title_sort acidithiobacillus ferrooxidans's comprehensive model driven analysis of the electron transfer metabolism and synthetic strain design for biomining applications
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5779729/
https://www.ncbi.nlm.nih.gov/pubmed/29468116
http://dx.doi.org/10.1016/j.meteno.2016.03.003
work_keys_str_mv AT campodonicomiguela acidithiobacillusferrooxidansscomprehensivemodeldrivenanalysisoftheelectrontransfermetabolismandsyntheticstraindesignforbiominingapplications
AT vaismandaniela acidithiobacillusferrooxidansscomprehensivemodeldrivenanalysisoftheelectrontransfermetabolismandsyntheticstraindesignforbiominingapplications
AT castrojeanf acidithiobacillusferrooxidansscomprehensivemodeldrivenanalysisoftheelectrontransfermetabolismandsyntheticstraindesignforbiominingapplications
AT razmilicvaleria acidithiobacillusferrooxidansscomprehensivemodeldrivenanalysisoftheelectrontransfermetabolismandsyntheticstraindesignforbiominingapplications
AT mercadofrancesca acidithiobacillusferrooxidansscomprehensivemodeldrivenanalysisoftheelectrontransfermetabolismandsyntheticstraindesignforbiominingapplications
AT andrewsbarbaraa acidithiobacillusferrooxidansscomprehensivemodeldrivenanalysisoftheelectrontransfermetabolismandsyntheticstraindesignforbiominingapplications
AT feistadamm acidithiobacillusferrooxidansscomprehensivemodeldrivenanalysisoftheelectrontransfermetabolismandsyntheticstraindesignforbiominingapplications
AT asenjojuana acidithiobacillusferrooxidansscomprehensivemodeldrivenanalysisoftheelectrontransfermetabolismandsyntheticstraindesignforbiominingapplications