Cargando…
Systematic module approach identifies altered genes and pathways in four types of ovarian cancer
The present study aimed to identify altered genes and pathways associated with four histotypes of ovarian cancer, according to the systematic tracking of dysregulated modules of reweighted protein-protein interaction (PPI) networks. Firstly, the PPI network and gene expression data were initially in...
Autores principales: | Liu, Jing, Wang, Hui-Ling, Ma, Feng-Mei, Guo, Hong-Ping, Fang, Ning-Ning, Wang, Shan-Shan, Li, Xin-Hong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
D.A. Spandidos
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5779873/ https://www.ncbi.nlm.nih.gov/pubmed/28983627 http://dx.doi.org/10.3892/mmr.2017.7649 |
Ejemplares similares
-
A network-pathway based module identification for predicting the prognosis of ovarian cancer patients
por: Wang, Xin, et al.
Publicado: (2016) -
DynSig: Modelling Dynamic Signaling Alterations along Gene Pathways for Identifying Differential Pathways
por: Shi, Ming, et al.
Publicado: (2018) -
An integrative approach to identifying cancer chemoresistance-associated pathways
por: Chao, Shih-Yi, et al.
Publicado: (2011) -
ICan: An Integrated Co-Alteration Network to Identify Ovarian Cancer-Related Genes
por: Zhou, Yuanshuai, et al.
Publicado: (2015) -
Individualized pathway activity algorithm identifies oncogenic pathways in pan-cancer analysis
por: Ke, Xin, et al.
Publicado: (2022)