Cargando…
PARP-1 may be involved in hydroquinone-induced apoptosis by poly ADP-ribosylation of ZO-2
Hydroquinone (HQ), a major reactive metabolite of benzene, contributes to benzene-induced leukemia. The molecular mechanisms that underlie this activity remain to be elucidated. Poly ADP-ribosylation (PARylation) is a type of reversible posttranslational modification that is performed by enzymes in...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
D.A. Spandidos
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5779892/ https://www.ncbi.nlm.nih.gov/pubmed/28983606 http://dx.doi.org/10.3892/mmr.2017.7643 |
Sumario: | Hydroquinone (HQ), a major reactive metabolite of benzene, contributes to benzene-induced leukemia. The molecular mechanisms that underlie this activity remain to be elucidated. Poly ADP-ribosylation (PARylation) is a type of reversible posttranslational modification that is performed by enzymes in the PAR polymerase (PARP) family and mediates different biological processes, including apoptosis. Zona occludens 2 (ZO-2) is a tight junction scaffold protein, which is involved in cell proliferation and apoptosis. The present study investigated the activity and mechanisms regulated by PARP-1 during HQ-induced apoptosis using TK6 lymphoblastoid cells and PARP-1-silenced TK6 cells. The results revealed that exposure to 10 µM HQ for 72 h induced apoptosis in TK6 cells and that apoptosis was attenuated in PARP-1-silenced TK6 cells. In cells treated with HQ, inhibition of PARP-1 increased the expression of B cell leukemia/lymphoma 2 (Bcl-2), increased ATP production and reduced reactive oxygen species (ROS) production relative to the levels observed in cells treated with HQ alone. Co-localization of ZO-2 and PAR (or PARP-1 protein) was determined using immunofluorescence confocal microscopy. The findings of the present study revealed that ZO-2 was PARylated via an interaction with PARP-1, which was consistent with an analysis of protein expression that was performed using western blot analysis, which determined that ZO-2 protein expression was upregulated in HQ-treated control cells and downregulated in HQ-treated PARP-1-silenced TK6 cells. These findings indicated that prolonged exposure to a low dose of HQ induced TK6 cells to undergo apoptosis, whereas inhibiting PARP-1 attenuates cellular apoptosis by activating Bcl-2 and energy-saving processes and reducing ROS. The present study determined that PARP-1 was involved in HQ-induced apoptosis by PARylation of ZO-2. |
---|