Cargando…
An investigation of methyl tert-butyl ether-induced cytotoxicity and protein profile in Chinese hamster ovary cells
Methyl tert-butyl ether (MTBE) is widely used as an oxygenating agent in gasoline to reduce harmful emissions. However, previous studies have demonstrated that MTBE is a cytotoxic substance that has harmful effects in vivo and in vitro. Although remarkable progress has been made in elucidating the m...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
D.A. Spandidos
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5779912/ https://www.ncbi.nlm.nih.gov/pubmed/29039499 http://dx.doi.org/10.3892/mmr.2017.7761 |
_version_ | 1783294637910261760 |
---|---|
author | Xie, Guangshan Hong, Wen-Xu Zhou, Li Yang, Xifei Huang, Haiyan Wu, Desheng Huang, Xinfeng Zhu, Weiguo Liu, Jianjun |
author_facet | Xie, Guangshan Hong, Wen-Xu Zhou, Li Yang, Xifei Huang, Haiyan Wu, Desheng Huang, Xinfeng Zhu, Weiguo Liu, Jianjun |
author_sort | Xie, Guangshan |
collection | PubMed |
description | Methyl tert-butyl ether (MTBE) is widely used as an oxygenating agent in gasoline to reduce harmful emissions. However, previous studies have demonstrated that MTBE is a cytotoxic substance that has harmful effects in vivo and in vitro. Although remarkable progress has been made in elucidating the mechanisms underlying the MTBE-induced reproductive toxicological effect in different cell lines, the precise mechanisms remain far from understood. The present study aimed to evaluate whether mammalian ovary cells were sensitive to MTBE exposure in vitro by assessing cell viability, lactate dehydrogenase (LDH) leakage, malondialdehyde (MDA) content and antioxidant enzyme activities. In addition, the effect of MTBE exposure on differential protein expression profiles was examined by two-dimensional electrophoresis and matrix-assisted laser desorption/ionization-time of flight mass spectrometry. MTBE exposure induced significant effects on cell viability, LDH leakage, plasma membrane damage and the activity of antioxidant enzymes. In the proteomic analysis, 24 proteins were demonstrated to be significantly affected by MTBE exposure. Functional analysis indicated that these proteins were involved in catalytic activity, binding, structural molecule activity, metabolic processes, cellular processes and localization, highlighting the fact that the cytotoxic mechanisms resulting from MTBE exposure are complex and diverse. The altered expression levels of two representative proteins, heat shock protein family A (Hsp70) members 8 and 9, were further confirmed by western blot analysis. The results revealed that MTBE exposure affects protein expression in Chinese hamster ovary cells and that oxidative stress and altered protein levels constitute the mechanisms underlying MTBE-induced cytotoxicity. These findings provided novel insights into the biochemical mechanisms involved in MTBE-induced cytotoxicity in the reproductive system. |
format | Online Article Text |
id | pubmed-5779912 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | D.A. Spandidos |
record_format | MEDLINE/PubMed |
spelling | pubmed-57799122018-02-12 An investigation of methyl tert-butyl ether-induced cytotoxicity and protein profile in Chinese hamster ovary cells Xie, Guangshan Hong, Wen-Xu Zhou, Li Yang, Xifei Huang, Haiyan Wu, Desheng Huang, Xinfeng Zhu, Weiguo Liu, Jianjun Mol Med Rep Articles Methyl tert-butyl ether (MTBE) is widely used as an oxygenating agent in gasoline to reduce harmful emissions. However, previous studies have demonstrated that MTBE is a cytotoxic substance that has harmful effects in vivo and in vitro. Although remarkable progress has been made in elucidating the mechanisms underlying the MTBE-induced reproductive toxicological effect in different cell lines, the precise mechanisms remain far from understood. The present study aimed to evaluate whether mammalian ovary cells were sensitive to MTBE exposure in vitro by assessing cell viability, lactate dehydrogenase (LDH) leakage, malondialdehyde (MDA) content and antioxidant enzyme activities. In addition, the effect of MTBE exposure on differential protein expression profiles was examined by two-dimensional electrophoresis and matrix-assisted laser desorption/ionization-time of flight mass spectrometry. MTBE exposure induced significant effects on cell viability, LDH leakage, plasma membrane damage and the activity of antioxidant enzymes. In the proteomic analysis, 24 proteins were demonstrated to be significantly affected by MTBE exposure. Functional analysis indicated that these proteins were involved in catalytic activity, binding, structural molecule activity, metabolic processes, cellular processes and localization, highlighting the fact that the cytotoxic mechanisms resulting from MTBE exposure are complex and diverse. The altered expression levels of two representative proteins, heat shock protein family A (Hsp70) members 8 and 9, were further confirmed by western blot analysis. The results revealed that MTBE exposure affects protein expression in Chinese hamster ovary cells and that oxidative stress and altered protein levels constitute the mechanisms underlying MTBE-induced cytotoxicity. These findings provided novel insights into the biochemical mechanisms involved in MTBE-induced cytotoxicity in the reproductive system. D.A. Spandidos 2017-12 2017-10-11 /pmc/articles/PMC5779912/ /pubmed/29039499 http://dx.doi.org/10.3892/mmr.2017.7761 Text en Copyright: © Xie et al. This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License (https://creativecommons.org/licenses/by-nc-nd/4.0/) , which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made. |
spellingShingle | Articles Xie, Guangshan Hong, Wen-Xu Zhou, Li Yang, Xifei Huang, Haiyan Wu, Desheng Huang, Xinfeng Zhu, Weiguo Liu, Jianjun An investigation of methyl tert-butyl ether-induced cytotoxicity and protein profile in Chinese hamster ovary cells |
title | An investigation of methyl tert-butyl ether-induced cytotoxicity and protein profile in Chinese hamster ovary cells |
title_full | An investigation of methyl tert-butyl ether-induced cytotoxicity and protein profile in Chinese hamster ovary cells |
title_fullStr | An investigation of methyl tert-butyl ether-induced cytotoxicity and protein profile in Chinese hamster ovary cells |
title_full_unstemmed | An investigation of methyl tert-butyl ether-induced cytotoxicity and protein profile in Chinese hamster ovary cells |
title_short | An investigation of methyl tert-butyl ether-induced cytotoxicity and protein profile in Chinese hamster ovary cells |
title_sort | investigation of methyl tert-butyl ether-induced cytotoxicity and protein profile in chinese hamster ovary cells |
topic | Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5779912/ https://www.ncbi.nlm.nih.gov/pubmed/29039499 http://dx.doi.org/10.3892/mmr.2017.7761 |
work_keys_str_mv | AT xieguangshan aninvestigationofmethyltertbutyletherinducedcytotoxicityandproteinprofileinchinesehamsterovarycells AT hongwenxu aninvestigationofmethyltertbutyletherinducedcytotoxicityandproteinprofileinchinesehamsterovarycells AT zhouli aninvestigationofmethyltertbutyletherinducedcytotoxicityandproteinprofileinchinesehamsterovarycells AT yangxifei aninvestigationofmethyltertbutyletherinducedcytotoxicityandproteinprofileinchinesehamsterovarycells AT huanghaiyan aninvestigationofmethyltertbutyletherinducedcytotoxicityandproteinprofileinchinesehamsterovarycells AT wudesheng aninvestigationofmethyltertbutyletherinducedcytotoxicityandproteinprofileinchinesehamsterovarycells AT huangxinfeng aninvestigationofmethyltertbutyletherinducedcytotoxicityandproteinprofileinchinesehamsterovarycells AT zhuweiguo aninvestigationofmethyltertbutyletherinducedcytotoxicityandproteinprofileinchinesehamsterovarycells AT liujianjun aninvestigationofmethyltertbutyletherinducedcytotoxicityandproteinprofileinchinesehamsterovarycells AT xieguangshan investigationofmethyltertbutyletherinducedcytotoxicityandproteinprofileinchinesehamsterovarycells AT hongwenxu investigationofmethyltertbutyletherinducedcytotoxicityandproteinprofileinchinesehamsterovarycells AT zhouli investigationofmethyltertbutyletherinducedcytotoxicityandproteinprofileinchinesehamsterovarycells AT yangxifei investigationofmethyltertbutyletherinducedcytotoxicityandproteinprofileinchinesehamsterovarycells AT huanghaiyan investigationofmethyltertbutyletherinducedcytotoxicityandproteinprofileinchinesehamsterovarycells AT wudesheng investigationofmethyltertbutyletherinducedcytotoxicityandproteinprofileinchinesehamsterovarycells AT huangxinfeng investigationofmethyltertbutyletherinducedcytotoxicityandproteinprofileinchinesehamsterovarycells AT zhuweiguo investigationofmethyltertbutyletherinducedcytotoxicityandproteinprofileinchinesehamsterovarycells AT liujianjun investigationofmethyltertbutyletherinducedcytotoxicityandproteinprofileinchinesehamsterovarycells |