Cargando…

ID1 contributes to cell growth invasion and migration in salivary adenoid cystic carcinoma

Previous studies have reported that inhibitor of DNA binding 1 (ID1) exerts an oncogenic role in a number of tumors. In the present study, the role of ID1 in the growth, invasion and migration of salivary adenoid cystic carcinoma (SACC) cells was investigated. ID1 expression in clinical SACC samples...

Descripción completa

Detalles Bibliográficos
Autores principales: Hu, Xiao-Meng, Lin, Ting, Huang, Xiao-Yu, Gan, Rui-Huan, Zhao, Yong, Feng, Yan, Ding, Lin-Can, Su, Bo-Hua, Zheng, Da-Li, Lu, You-Guang
Formato: Online Artículo Texto
Lenguaje:English
Publicado: D.A. Spandidos 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5779972/
https://www.ncbi.nlm.nih.gov/pubmed/29039489
http://dx.doi.org/10.3892/mmr.2017.7744
Descripción
Sumario:Previous studies have reported that inhibitor of DNA binding 1 (ID1) exerts an oncogenic role in a number of tumors. In the present study, the role of ID1 in the growth, invasion and migration of salivary adenoid cystic carcinoma (SACC) cells was investigated. ID1 expression in clinical SACC samples was compared with that in normal salivary tissues using immunohistochemical staining, and the correlation between ID1 expression and clinical pathological characteristics was then determined. Subsequently, ID1 was overexpressed or silenced to investigate the effects of ID1 expression on SACC cell proliferation, invasion and migration. In addition, the gene expression levels of known ID1 target genes, including S100A9, CDKN2A and matrix metalloproteinase 1 (MMP1) was measured using reverse transcription-quantitative polymerase chain reaction to elucidate the potential mechanisms of ID1 in SACC. The results of the present study indicated that the protein expression levels of ID1 were significantly increased in the SACC tissues compared with that in the normal salivary tissues (P<0.001), and a positive correlation between ID1 expression and tumor stage (P=0.001), tumor invasion (P=0.002) and metastasis (P=0.019) in SACC was observed. Knockdown of ID1 in SACC cells significantly inhibited cell growth, invasion and migration (all P<0.01), whereas overexpression of ID1 promoted cell proliferation, invasion and migration (all P<0.01). The gene expression level of MMP1 was significantly reduced following ID1 knockdown in SACC-83 cells when compared with negative controls (P<0.05), whereas S100A9 and CDKN2A expression levels were significantly upregulated (both P<0.05). The results suggest that ID1 may regulate the growth, invasion and migration of SACC cells, and that MMP1, S100A9 and CDKN2A may serve as target genes of ID1 and mediate the effects of ID1 in SACC cells. Therefore, ID1 may present a potential target gene for the treatment of patients with SACC to inhibit cancer cell growth and metastasis.