Cargando…

Saprolegnia parasitica Isolated from Rainbow Trout in Korea: Characterization, Anti-Saprolegnia Activity and Host Pathogen Interaction in Zebrafish Disease Model

Saprolegniasis is one of the most devastating oomycete diseases in freshwater fish which is caused by species in the genus Saprolegnia including Saprolegnia parasitica. In this study, we isolated the strain of S. parasitica from diseased rainbow trout in Korea. Morphological and molecular based iden...

Descripción completa

Detalles Bibliográficos
Autores principales: Shin, Sangyeop, Kulatunga, D. C. M., Dananjaya, S. H. S., Nikapitiya, Chamilani, Lee, Jehee, De Zoysa, Mahanama
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Korean Society of Mycology 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5780361/
https://www.ncbi.nlm.nih.gov/pubmed/29371797
http://dx.doi.org/10.5941/MYCO.2017.45.4.297
_version_ 1783294720566362112
author Shin, Sangyeop
Kulatunga, D. C. M.
Dananjaya, S. H. S.
Nikapitiya, Chamilani
Lee, Jehee
De Zoysa, Mahanama
author_facet Shin, Sangyeop
Kulatunga, D. C. M.
Dananjaya, S. H. S.
Nikapitiya, Chamilani
Lee, Jehee
De Zoysa, Mahanama
author_sort Shin, Sangyeop
collection PubMed
description Saprolegniasis is one of the most devastating oomycete diseases in freshwater fish which is caused by species in the genus Saprolegnia including Saprolegnia parasitica. In this study, we isolated the strain of S. parasitica from diseased rainbow trout in Korea. Morphological and molecular based identification confirmed that isolated oomycete belongs to the member of S. parasitica, supported by its typical features including cotton-like mycelium, zoospores and phylogenetic analysis with internal transcribed spacer region. Pathogenicity of isolated S. parasitica was developed in embryo, juvenile, and adult zebrafish as a disease model. Host-pathogen interaction in adult zebrafish was investigated at transcriptional level. Upon infection with S. parasitica, pathogen/antigen recognition and signaling (TLR2, TLR4b, TLR5b, NOD1, and major histocompatibility complex class I), pro/anti-inflammatory cytokines (interleukin [IL]-1β, tumor necrosis factor α, IL-6, IL-8, interferon γ, IL-12, and IL-10), matrix metalloproteinase (MMP9 and MMP13), cell surface molecules (CD8(+) and CD4(+)) and antioxidant enzymes (superoxide dismutase, catalase) related genes were differentially modulated at 3- and 12-hr post infection. As an anti-Saprolegnia agent, plant based lawsone was applied to investigate on the susceptibility of S. parasitica showing the minimum inhibitory concentration and percentage inhibition of radial growth as 200 μg/mL and 31.8%, respectively. Moreover, natural lawsone changed the membrane permeability of S. parasitica mycelium and caused irreversible damage and disintegration to the cellular membranes of S. parasitica. Transcriptional responses of the genes of S. parasitica mycelium exposed to lawsone were altered, indicating that lawsone could be a potential anti-S. parasitica agent for controlling S. parasitica infection.
format Online
Article
Text
id pubmed-5780361
institution National Center for Biotechnology Information
language English
publishDate 2017
publisher The Korean Society of Mycology
record_format MEDLINE/PubMed
spelling pubmed-57803612018-01-25 Saprolegnia parasitica Isolated from Rainbow Trout in Korea: Characterization, Anti-Saprolegnia Activity and Host Pathogen Interaction in Zebrafish Disease Model Shin, Sangyeop Kulatunga, D. C. M. Dananjaya, S. H. S. Nikapitiya, Chamilani Lee, Jehee De Zoysa, Mahanama Mycobiology Research Article Saprolegniasis is one of the most devastating oomycete diseases in freshwater fish which is caused by species in the genus Saprolegnia including Saprolegnia parasitica. In this study, we isolated the strain of S. parasitica from diseased rainbow trout in Korea. Morphological and molecular based identification confirmed that isolated oomycete belongs to the member of S. parasitica, supported by its typical features including cotton-like mycelium, zoospores and phylogenetic analysis with internal transcribed spacer region. Pathogenicity of isolated S. parasitica was developed in embryo, juvenile, and adult zebrafish as a disease model. Host-pathogen interaction in adult zebrafish was investigated at transcriptional level. Upon infection with S. parasitica, pathogen/antigen recognition and signaling (TLR2, TLR4b, TLR5b, NOD1, and major histocompatibility complex class I), pro/anti-inflammatory cytokines (interleukin [IL]-1β, tumor necrosis factor α, IL-6, IL-8, interferon γ, IL-12, and IL-10), matrix metalloproteinase (MMP9 and MMP13), cell surface molecules (CD8(+) and CD4(+)) and antioxidant enzymes (superoxide dismutase, catalase) related genes were differentially modulated at 3- and 12-hr post infection. As an anti-Saprolegnia agent, plant based lawsone was applied to investigate on the susceptibility of S. parasitica showing the minimum inhibitory concentration and percentage inhibition of radial growth as 200 μg/mL and 31.8%, respectively. Moreover, natural lawsone changed the membrane permeability of S. parasitica mycelium and caused irreversible damage and disintegration to the cellular membranes of S. parasitica. Transcriptional responses of the genes of S. parasitica mycelium exposed to lawsone were altered, indicating that lawsone could be a potential anti-S. parasitica agent for controlling S. parasitica infection. The Korean Society of Mycology 2017-12 2017-12-31 /pmc/articles/PMC5780361/ /pubmed/29371797 http://dx.doi.org/10.5941/MYCO.2017.45.4.297 Text en © The Korean Society of Mycology http://creativecommons.org/licenses/by-nc/3.0/ This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Research Article
Shin, Sangyeop
Kulatunga, D. C. M.
Dananjaya, S. H. S.
Nikapitiya, Chamilani
Lee, Jehee
De Zoysa, Mahanama
Saprolegnia parasitica Isolated from Rainbow Trout in Korea: Characterization, Anti-Saprolegnia Activity and Host Pathogen Interaction in Zebrafish Disease Model
title Saprolegnia parasitica Isolated from Rainbow Trout in Korea: Characterization, Anti-Saprolegnia Activity and Host Pathogen Interaction in Zebrafish Disease Model
title_full Saprolegnia parasitica Isolated from Rainbow Trout in Korea: Characterization, Anti-Saprolegnia Activity and Host Pathogen Interaction in Zebrafish Disease Model
title_fullStr Saprolegnia parasitica Isolated from Rainbow Trout in Korea: Characterization, Anti-Saprolegnia Activity and Host Pathogen Interaction in Zebrafish Disease Model
title_full_unstemmed Saprolegnia parasitica Isolated from Rainbow Trout in Korea: Characterization, Anti-Saprolegnia Activity and Host Pathogen Interaction in Zebrafish Disease Model
title_short Saprolegnia parasitica Isolated from Rainbow Trout in Korea: Characterization, Anti-Saprolegnia Activity and Host Pathogen Interaction in Zebrafish Disease Model
title_sort saprolegnia parasitica isolated from rainbow trout in korea: characterization, anti-saprolegnia activity and host pathogen interaction in zebrafish disease model
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5780361/
https://www.ncbi.nlm.nih.gov/pubmed/29371797
http://dx.doi.org/10.5941/MYCO.2017.45.4.297
work_keys_str_mv AT shinsangyeop saprolegniaparasiticaisolatedfromrainbowtroutinkoreacharacterizationantisaprolegniaactivityandhostpathogeninteractioninzebrafishdiseasemodel
AT kulatungadcm saprolegniaparasiticaisolatedfromrainbowtroutinkoreacharacterizationantisaprolegniaactivityandhostpathogeninteractioninzebrafishdiseasemodel
AT dananjayashs saprolegniaparasiticaisolatedfromrainbowtroutinkoreacharacterizationantisaprolegniaactivityandhostpathogeninteractioninzebrafishdiseasemodel
AT nikapitiyachamilani saprolegniaparasiticaisolatedfromrainbowtroutinkoreacharacterizationantisaprolegniaactivityandhostpathogeninteractioninzebrafishdiseasemodel
AT leejehee saprolegniaparasiticaisolatedfromrainbowtroutinkoreacharacterizationantisaprolegniaactivityandhostpathogeninteractioninzebrafishdiseasemodel
AT dezoysamahanama saprolegniaparasiticaisolatedfromrainbowtroutinkoreacharacterizationantisaprolegniaactivityandhostpathogeninteractioninzebrafishdiseasemodel