Cargando…
Geographically weighted temporally correlated logistic regression model
Detecting the temporally and spatially varying correlations is important to understand the biological and disease systems. Here we proposed a geographically weighted temporally correlated logistic regression (GWTCLR) model to identify such dynamic correlation of predictors on binomial outcome data,...
Autores principales: | Liu, Yang, Lam, Kwok-Fai, Wu, Joseph T., Lam, Tommy Tsan-Yuk |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5780421/ https://www.ncbi.nlm.nih.gov/pubmed/29362396 http://dx.doi.org/10.1038/s41598-018-19772-6 |
Ejemplares similares
-
Assessing COVID-19 risk with temporal indices and geographically weighted ordinal logistic regression in US counties
por: Chen, Vivian Yi-Ju, et al.
Publicado: (2022) -
Spatial Analysis of Severe Fever with Thrombocytopenia Syndrome Virus in China Using a Geographically Weighted Logistic Regression Model
por: Wu, Liang, et al.
Publicado: (2016) -
Tracking the Genomic Footprints of SARS-CoV-2 Transmission
por: Lam, Tommy Tsan-Yuk
Publicado: (2020) -
Differences in antibiotic use between patients with and without a regular doctor in Hong Kong
por: Lam, Tai Pong, et al.
Publicado: (2015) -
How long do the Hong Kong Chinese expect their URTI to last? – Effects on antibiotic use
por: Lam, Tai Pong, et al.
Publicado: (2015)