Cargando…

Repeated photon and C-ion irradiations in vivo have different impact on alteration of tumor characteristics

Precise characterization of tumor recurrence and regrowth after radiotherapy are important for prognostic understanding of the therapeutic effect. Here, we established a novel in vivo mouse model for evaluating the characteristics of regrown tumor after repeated photon and carbon ion (C-ion) irradia...

Descripción completa

Detalles Bibliográficos
Autores principales: Sato, Katsutoshi, Nitta, Nobuhiro, Aoki, Ichio, Imai, Takashi, Shimokawa, Takashi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5780469/
https://www.ncbi.nlm.nih.gov/pubmed/29362374
http://dx.doi.org/10.1038/s41598-018-19422-x
Descripción
Sumario:Precise characterization of tumor recurrence and regrowth after radiotherapy are important for prognostic understanding of the therapeutic effect. Here, we established a novel in vivo mouse model for evaluating the characteristics of regrown tumor after repeated photon and carbon ion (C-ion) irradiations. The results showed that tumor growth rate, lung metastasis, shortening of the survival of the tumor-bearing mice, and tumor microvessel formation were promoted 2- to 3-fold, and expression of angiogenic and metastatic genes increased 1.5- to 15-fold in regrown tumors after repeated photon irradiations, whereas repeated C-ion irradiations did not alter these characteristics. Interestingly, both repeated photon and C-ion irradiations did not generate radioresistance, which is generally acquired for in vitro treatment. Our results demonstrated that the repetition of photon, and not C-ion, irradiations in vivo alter the characteristics of the regrown tumor, making it more aggressive without acquisition of radioresistance.