Cargando…

Accurate Influenza Monitoring and Forecasting Using Novel Internet Data Streams: A Case Study in the Boston Metropolis

BACKGROUND: Influenza outbreaks pose major challenges to public health around the world, leading to thousands of deaths a year in the United States alone. Accurate systems that track influenza activity at the city level are necessary to provide actionable information that can be used for clinical, h...

Descripción completa

Detalles Bibliográficos
Autores principales: Lu, Fred Sun, Hou, Suqin, Baltrusaitis, Kristin, Shah, Manan, Leskovec, Jure, Sosic, Rok, Hawkins, Jared, Brownstein, John, Conidi, Giuseppe, Gunn, Julia, Gray, Josh, Zink, Anna, Santillana, Mauricio
Formato: Online Artículo Texto
Lenguaje:English
Publicado: JMIR Publications 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5780615/
https://www.ncbi.nlm.nih.gov/pubmed/29317382
http://dx.doi.org/10.2196/publichealth.8950
_version_ 1783294771670810624
author Lu, Fred Sun
Hou, Suqin
Baltrusaitis, Kristin
Shah, Manan
Leskovec, Jure
Sosic, Rok
Hawkins, Jared
Brownstein, John
Conidi, Giuseppe
Gunn, Julia
Gray, Josh
Zink, Anna
Santillana, Mauricio
author_facet Lu, Fred Sun
Hou, Suqin
Baltrusaitis, Kristin
Shah, Manan
Leskovec, Jure
Sosic, Rok
Hawkins, Jared
Brownstein, John
Conidi, Giuseppe
Gunn, Julia
Gray, Josh
Zink, Anna
Santillana, Mauricio
author_sort Lu, Fred Sun
collection PubMed
description BACKGROUND: Influenza outbreaks pose major challenges to public health around the world, leading to thousands of deaths a year in the United States alone. Accurate systems that track influenza activity at the city level are necessary to provide actionable information that can be used for clinical, hospital, and community outbreak preparation. OBJECTIVE: Although Internet-based real-time data sources such as Google searches and tweets have been successfully used to produce influenza activity estimates ahead of traditional health care–based systems at national and state levels, influenza tracking and forecasting at finer spatial resolutions, such as the city level, remain an open question. Our study aimed to present a precise, near real-time methodology capable of producing influenza estimates ahead of those collected and published by the Boston Public Health Commission (BPHC) for the Boston metropolitan area. This approach has great potential to be extended to other cities with access to similar data sources. METHODS: We first tested the ability of Google searches, Twitter posts, electronic health records, and a crowd-sourced influenza reporting system to detect influenza activity in the Boston metropolis separately. We then adapted a multivariate dynamic regression method named ARGO (autoregression with general online information), designed for tracking influenza at the national level, and showed that it effectively uses the above data sources to monitor and forecast influenza at the city level 1 week ahead of the current date. Finally, we presented an ensemble-based approach capable of combining information from models based on multiple data sources to more robustly nowcast as well as forecast influenza activity in the Boston metropolitan area. The performances of our models were evaluated in an out-of-sample fashion over 4 influenza seasons within 2012-2016, as well as a holdout validation period from 2016 to 2017. RESULTS: Our ensemble-based methods incorporating information from diverse models based on multiple data sources, including ARGO, produced the most robust and accurate results. The observed Pearson correlations between our out-of-sample flu activity estimates and those historically reported by the BPHC were 0.98 in nowcasting influenza and 0.94 in forecasting influenza 1 week ahead of the current date. CONCLUSIONS: We show that information from Internet-based data sources, when combined using an informed, robust methodology, can be effectively used as early indicators of influenza activity at fine geographic resolutions.
format Online
Article
Text
id pubmed-5780615
institution National Center for Biotechnology Information
language English
publishDate 2018
publisher JMIR Publications
record_format MEDLINE/PubMed
spelling pubmed-57806152018-01-31 Accurate Influenza Monitoring and Forecasting Using Novel Internet Data Streams: A Case Study in the Boston Metropolis Lu, Fred Sun Hou, Suqin Baltrusaitis, Kristin Shah, Manan Leskovec, Jure Sosic, Rok Hawkins, Jared Brownstein, John Conidi, Giuseppe Gunn, Julia Gray, Josh Zink, Anna Santillana, Mauricio JMIR Public Health Surveill Original Paper BACKGROUND: Influenza outbreaks pose major challenges to public health around the world, leading to thousands of deaths a year in the United States alone. Accurate systems that track influenza activity at the city level are necessary to provide actionable information that can be used for clinical, hospital, and community outbreak preparation. OBJECTIVE: Although Internet-based real-time data sources such as Google searches and tweets have been successfully used to produce influenza activity estimates ahead of traditional health care–based systems at national and state levels, influenza tracking and forecasting at finer spatial resolutions, such as the city level, remain an open question. Our study aimed to present a precise, near real-time methodology capable of producing influenza estimates ahead of those collected and published by the Boston Public Health Commission (BPHC) for the Boston metropolitan area. This approach has great potential to be extended to other cities with access to similar data sources. METHODS: We first tested the ability of Google searches, Twitter posts, electronic health records, and a crowd-sourced influenza reporting system to detect influenza activity in the Boston metropolis separately. We then adapted a multivariate dynamic regression method named ARGO (autoregression with general online information), designed for tracking influenza at the national level, and showed that it effectively uses the above data sources to monitor and forecast influenza at the city level 1 week ahead of the current date. Finally, we presented an ensemble-based approach capable of combining information from models based on multiple data sources to more robustly nowcast as well as forecast influenza activity in the Boston metropolitan area. The performances of our models were evaluated in an out-of-sample fashion over 4 influenza seasons within 2012-2016, as well as a holdout validation period from 2016 to 2017. RESULTS: Our ensemble-based methods incorporating information from diverse models based on multiple data sources, including ARGO, produced the most robust and accurate results. The observed Pearson correlations between our out-of-sample flu activity estimates and those historically reported by the BPHC were 0.98 in nowcasting influenza and 0.94 in forecasting influenza 1 week ahead of the current date. CONCLUSIONS: We show that information from Internet-based data sources, when combined using an informed, robust methodology, can be effectively used as early indicators of influenza activity at fine geographic resolutions. JMIR Publications 2018-01-09 /pmc/articles/PMC5780615/ /pubmed/29317382 http://dx.doi.org/10.2196/publichealth.8950 Text en ©Fred Sun Lu, Suqin Hou, Kristin Baltrusaitis, Manan Shah, Jure Leskovec, Rok Sosic, Jared Hawkins, John Brownstein, Giuseppe Conidi, Julia Gunn, Josh Gray, Anna Zink, Mauricio Santillana. Originally published in JMIR Public Health and Surveillance (http://publichealth.jmir.org), 09.01.2018. https://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work, first published in JMIR Public Health and Surveillance, is properly cited. The complete bibliographic information, a link to the original publication on http://publichealth.jmir.org, as well as this copyright and license information must be included.
spellingShingle Original Paper
Lu, Fred Sun
Hou, Suqin
Baltrusaitis, Kristin
Shah, Manan
Leskovec, Jure
Sosic, Rok
Hawkins, Jared
Brownstein, John
Conidi, Giuseppe
Gunn, Julia
Gray, Josh
Zink, Anna
Santillana, Mauricio
Accurate Influenza Monitoring and Forecasting Using Novel Internet Data Streams: A Case Study in the Boston Metropolis
title Accurate Influenza Monitoring and Forecasting Using Novel Internet Data Streams: A Case Study in the Boston Metropolis
title_full Accurate Influenza Monitoring and Forecasting Using Novel Internet Data Streams: A Case Study in the Boston Metropolis
title_fullStr Accurate Influenza Monitoring and Forecasting Using Novel Internet Data Streams: A Case Study in the Boston Metropolis
title_full_unstemmed Accurate Influenza Monitoring and Forecasting Using Novel Internet Data Streams: A Case Study in the Boston Metropolis
title_short Accurate Influenza Monitoring and Forecasting Using Novel Internet Data Streams: A Case Study in the Boston Metropolis
title_sort accurate influenza monitoring and forecasting using novel internet data streams: a case study in the boston metropolis
topic Original Paper
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5780615/
https://www.ncbi.nlm.nih.gov/pubmed/29317382
http://dx.doi.org/10.2196/publichealth.8950
work_keys_str_mv AT lufredsun accurateinfluenzamonitoringandforecastingusingnovelinternetdatastreamsacasestudyinthebostonmetropolis
AT housuqin accurateinfluenzamonitoringandforecastingusingnovelinternetdatastreamsacasestudyinthebostonmetropolis
AT baltrusaitiskristin accurateinfluenzamonitoringandforecastingusingnovelinternetdatastreamsacasestudyinthebostonmetropolis
AT shahmanan accurateinfluenzamonitoringandforecastingusingnovelinternetdatastreamsacasestudyinthebostonmetropolis
AT leskovecjure accurateinfluenzamonitoringandforecastingusingnovelinternetdatastreamsacasestudyinthebostonmetropolis
AT sosicrok accurateinfluenzamonitoringandforecastingusingnovelinternetdatastreamsacasestudyinthebostonmetropolis
AT hawkinsjared accurateinfluenzamonitoringandforecastingusingnovelinternetdatastreamsacasestudyinthebostonmetropolis
AT brownsteinjohn accurateinfluenzamonitoringandforecastingusingnovelinternetdatastreamsacasestudyinthebostonmetropolis
AT conidigiuseppe accurateinfluenzamonitoringandforecastingusingnovelinternetdatastreamsacasestudyinthebostonmetropolis
AT gunnjulia accurateinfluenzamonitoringandforecastingusingnovelinternetdatastreamsacasestudyinthebostonmetropolis
AT grayjosh accurateinfluenzamonitoringandforecastingusingnovelinternetdatastreamsacasestudyinthebostonmetropolis
AT zinkanna accurateinfluenzamonitoringandforecastingusingnovelinternetdatastreamsacasestudyinthebostonmetropolis
AT santillanamauricio accurateinfluenzamonitoringandforecastingusingnovelinternetdatastreamsacasestudyinthebostonmetropolis