Cargando…

Clinical, laboratory and radiologic characteristics of 2009 pandemic influenza A/H1N1 pneumonia: primary influenza pneumonia versus concomitant/secondary bacterial pneumonia

Please cite this paper as: Song et al. (2011). Clinical, laboratory and radiologic characteristics of 2009 pandemic influenza A/H1N1 pneumonia: primary influenza pneumonia versus concomitant/secondary bacterial pneumonia. Influenza and Other Respiratory Viruses 5(6), e535–e543. Background  Although...

Descripción completa

Detalles Bibliográficos
Autores principales: Song, Joon Y., Cheong, Hee J., Heo, Jung Y., Noh, Ji Y., Yong, Hwan S., Kim, Yoon K., Kang, Eun Y., Choi, Won S., Jo, Yu M., Kim, Woo J.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Blackwell Publishing Ltd 2011
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5780671/
https://www.ncbi.nlm.nih.gov/pubmed/21682848
http://dx.doi.org/10.1111/j.1750-2659.2011.00269.x
Descripción
Sumario:Please cite this paper as: Song et al. (2011). Clinical, laboratory and radiologic characteristics of 2009 pandemic influenza A/H1N1 pneumonia: primary influenza pneumonia versus concomitant/secondary bacterial pneumonia. Influenza and Other Respiratory Viruses 5(6), e535–e543. Background  Although influenza virus usually involves the upper respiratory tract, pneumonia was seen more frequently with the 2009 pandemic influenza A/H1N1 than with seasonal influenza. Methods  From September 1, 2009, to January 31, 2010, a specialized clinic for patients (aged ≥15 years) with ILI was operated in Korea University Guro Hospital. RT‐PCR assay was performed to diagnose 2009 pandemic influenza A/H1N1. A retrospective case–case–control study was performed to determine the predictive factors for influenza pneumonia and to discriminate concomitant/secondary bacterial pneumonia from primary influenza pneumonia during the 2009–2010 pandemic. Results  During the study period, the proportions of fatal cases and pneumonia development were 0·12% and 1·59%, respectively. Patients with pneumonic influenza were less likely to have nasal symptoms and extra‐pulmonary symptoms (myalgia, headache, and diarrhea) compared to patients with non‐pneumonic influenza. Crackle was audible in just about half of the patients with pneumonic influenza (38·5% of patients with primary influenza pneumonia and 53·3% of patients with concomitant/secondary bacterial pneumonia). Procalcitonin, C‐reactive protein (CRP), and lactate dehydrogenase were markedly increased in patients with influenza pneumonia. Furthermore, procalcitonin (cutoff value 0·35 ng/ml, sensitivity 81·8%, and specificity 66·7%) and CRP (cutoff value 86·5 mg/IU, sensitivity 81·8%, and specificity 59·3%) were discriminative between patients with concomitant/secondary bacterial pneumonia and patients with primary influenza pneumonia. Conclusions  Considering the subtle manifestations of 2009 pandemic influenza A/H1N1 pneumonia in the early stage, high clinical suspicion is required to detect this condition. Both procalcitonin and CRP would be helpful to differentiate primary influenza pneumonia from concomitant/secondary bacterial pneumonia.