Cargando…
GT-WGS: an efficient and economic tool for large-scale WGS analyses based on the AWS cloud service
BACKGROUND: Whole-genome sequencing (WGS) plays an increasingly important role in clinical practice and public health. Due to the big data size, WGS data analysis is usually compute-intensive and IO-intensive. Currently it usually takes 30 to 40 h to finish a 50× WGS analysis task, which is far from...
Autores principales: | Wang, Yiqi, Li, Gen, Ma, Mark, He, Fazhong, Song, Zhuo, Zhang, Wei, Wu, Chengkun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5780748/ https://www.ncbi.nlm.nih.gov/pubmed/29363427 http://dx.doi.org/10.1186/s12864-017-4334-x |
Ejemplares similares
-
Clinical sequencing: is WGS the better WES?
por: Meienberg, Janine, et al.
Publicado: (2016) -
Indikationsprüfung bei Patienten in Intensiv-WGs
por: Lux, Eberhard Albert, et al.
Publicado: (2021) -
WGS to predict antibiotic MICs for Neisseria gonorrhoeae
por: Eyre, David W., et al.
Publicado: (2017) -
The question of WGS’s clinical utility remains unanswered
por: Battke, Florian, et al.
Publicado: (2021) -
ONT long-read WGS for variant discovery and orthogonal confirmation of short read WGS derived genetic variants in clinical genetic testing
por: Kaplun, Ludmila, et al.
Publicado: (2023)