Cargando…
Shrinkage Clustering: a fast and size-constrained clustering algorithm for biomedical applications
BACKGROUND: Many common clustering algorithms require a two-step process that limits their efficiency. The algorithms need to be performed repetitively and need to be implemented together with a model selection criterion. These two steps are needed in order to determine both the number of clusters p...
Autores principales: | Hu, Chenyue W., Li, Hanyang, Qutub, Amina A. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5782397/ https://www.ncbi.nlm.nih.gov/pubmed/29361928 http://dx.doi.org/10.1186/s12859-018-2022-8 |
Ejemplares similares
-
Progeny Clustering: A Method to Identify Biological Phenotypes
por: Hu, Chenyue W., et al.
Publicado: (2015) -
Constrained clustering: advances in algorithms, theory, and applications
por: Basu, Sugato, et al.
Publicado: (2008) -
Fast Constrained Spectral Clustering and Cluster Ensemble with Random Projection
por: Liu, Wenfen, et al.
Publicado: (2017) -
Choosing an imbalance metric for covariate-constrained randomization in multiple-arm cluster-randomized trials
por: Ciolino, Jody D., et al.
Publicado: (2019) -
Methods for sample size determination in cluster randomized trials
por: Rutterford, Clare, et al.
Publicado: (2015)