Cargando…
Fine-scale spatial and temporal heterogeneities in insecticide resistance profiles of the malaria vector, Anopheles arabiensis in rural south-eastern Tanzania
Background: Programmatic monitoring of insecticide resistance in disease vectors is mostly done on a large scale, often focusing on differences between districts, regions or countries. However, local heterogeneities in residual malaria transmission imply the need for finer-scale data. This study rep...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
F1000 Research Limited
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5782413/ https://www.ncbi.nlm.nih.gov/pubmed/29417094 http://dx.doi.org/10.12688/wellcomeopenres.12617.1 |
_version_ | 1783295187697532928 |
---|---|
author | Matowo, Nancy S. Munhenga, Givemore Tanner, Marcel Coetzee, Maureen Feringa, Wim F. Ngowo, Halfan S. Koekemoer, Lizette L. Okumu, Fredros O. |
author_facet | Matowo, Nancy S. Munhenga, Givemore Tanner, Marcel Coetzee, Maureen Feringa, Wim F. Ngowo, Halfan S. Koekemoer, Lizette L. Okumu, Fredros O. |
author_sort | Matowo, Nancy S. |
collection | PubMed |
description | Background: Programmatic monitoring of insecticide resistance in disease vectors is mostly done on a large scale, often focusing on differences between districts, regions or countries. However, local heterogeneities in residual malaria transmission imply the need for finer-scale data. This study reports small-scale variations of insecticide susceptibility in Anopheles arabiensis between three neighbouring villages across two seasons in Tanzania, where insecticidal bed nets are extensively used, but malaria transmission persists. Methods: WHO insecticide susceptibility assays were conducted on female and male An. arabiensis from three proximal villages, Minepa, Lupiro, and Mavimba, during dry (June-December 2015) and wet (January-May 2016) seasons. Adults emerging from wild-collected larvae were exposed to 0.05% lambda-cyhalothrin, 0.05% deltamethrin, 0.75% permethrin, 4% DDT, 4% dieldrin, 0.1% bendiocarb, 0.1% propoxur, 0.25% pirimiphos-methyl and 5% malathion. A hydrolysis probe assay was used to screen for L1014F ( kdr-w) and L1014S ( kdr-e) mutations in specimens resistant to DDT or pyrethroids. Synergist assays using piperonly butoxide (PBO) and triphenol phosphate (TPP) were done to assess pyrethroid and bendiocarb resistance phenotypes. Results: There were clear seasonal and spatial fluctuations in phenotypic resistance status in An. arabiensis to pyrethroids, DDT and bendiocarb. Pre-exposure to PBO and TPP, resulted in lower knockdown rates and higher mortalities against pyrethroids and bendiocarb, compared to tests without the synergists. Neither L1014F nor L1014S mutations were detected. Conclusions: This study confirmed the presence of pyrethroid resistance in An. arabiensis and showed small-scale differences in resistance levels between the villages, and between seasons. Substantial, though incomplete, reversal of pyrethroid and bendiocarb resistance following pre-exposure to PBO and TPP, and absence of kdr alleles suggest involvement of P450 monooxygenases and esterases in the resistant phenotypes. We recommend, for effective resistance management, further bioassays to quantify the strength of resistance, and both biochemical and molecular analysis to elucidate specific enzymes responsible in resistance. |
format | Online Article Text |
id | pubmed-5782413 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | F1000 Research Limited |
record_format | MEDLINE/PubMed |
spelling | pubmed-57824132018-02-06 Fine-scale spatial and temporal heterogeneities in insecticide resistance profiles of the malaria vector, Anopheles arabiensis in rural south-eastern Tanzania Matowo, Nancy S. Munhenga, Givemore Tanner, Marcel Coetzee, Maureen Feringa, Wim F. Ngowo, Halfan S. Koekemoer, Lizette L. Okumu, Fredros O. Wellcome Open Res Research Article Background: Programmatic monitoring of insecticide resistance in disease vectors is mostly done on a large scale, often focusing on differences between districts, regions or countries. However, local heterogeneities in residual malaria transmission imply the need for finer-scale data. This study reports small-scale variations of insecticide susceptibility in Anopheles arabiensis between three neighbouring villages across two seasons in Tanzania, where insecticidal bed nets are extensively used, but malaria transmission persists. Methods: WHO insecticide susceptibility assays were conducted on female and male An. arabiensis from three proximal villages, Minepa, Lupiro, and Mavimba, during dry (June-December 2015) and wet (January-May 2016) seasons. Adults emerging from wild-collected larvae were exposed to 0.05% lambda-cyhalothrin, 0.05% deltamethrin, 0.75% permethrin, 4% DDT, 4% dieldrin, 0.1% bendiocarb, 0.1% propoxur, 0.25% pirimiphos-methyl and 5% malathion. A hydrolysis probe assay was used to screen for L1014F ( kdr-w) and L1014S ( kdr-e) mutations in specimens resistant to DDT or pyrethroids. Synergist assays using piperonly butoxide (PBO) and triphenol phosphate (TPP) were done to assess pyrethroid and bendiocarb resistance phenotypes. Results: There were clear seasonal and spatial fluctuations in phenotypic resistance status in An. arabiensis to pyrethroids, DDT and bendiocarb. Pre-exposure to PBO and TPP, resulted in lower knockdown rates and higher mortalities against pyrethroids and bendiocarb, compared to tests without the synergists. Neither L1014F nor L1014S mutations were detected. Conclusions: This study confirmed the presence of pyrethroid resistance in An. arabiensis and showed small-scale differences in resistance levels between the villages, and between seasons. Substantial, though incomplete, reversal of pyrethroid and bendiocarb resistance following pre-exposure to PBO and TPP, and absence of kdr alleles suggest involvement of P450 monooxygenases and esterases in the resistant phenotypes. We recommend, for effective resistance management, further bioassays to quantify the strength of resistance, and both biochemical and molecular analysis to elucidate specific enzymes responsible in resistance. F1000 Research Limited 2017-10-02 /pmc/articles/PMC5782413/ /pubmed/29417094 http://dx.doi.org/10.12688/wellcomeopenres.12617.1 Text en Copyright: © 2017 Matowo NS et al. http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Article Matowo, Nancy S. Munhenga, Givemore Tanner, Marcel Coetzee, Maureen Feringa, Wim F. Ngowo, Halfan S. Koekemoer, Lizette L. Okumu, Fredros O. Fine-scale spatial and temporal heterogeneities in insecticide resistance profiles of the malaria vector, Anopheles arabiensis in rural south-eastern Tanzania |
title | Fine-scale spatial and temporal heterogeneities in insecticide resistance profiles of the malaria vector,
Anopheles arabiensis in rural south-eastern Tanzania |
title_full | Fine-scale spatial and temporal heterogeneities in insecticide resistance profiles of the malaria vector,
Anopheles arabiensis in rural south-eastern Tanzania |
title_fullStr | Fine-scale spatial and temporal heterogeneities in insecticide resistance profiles of the malaria vector,
Anopheles arabiensis in rural south-eastern Tanzania |
title_full_unstemmed | Fine-scale spatial and temporal heterogeneities in insecticide resistance profiles of the malaria vector,
Anopheles arabiensis in rural south-eastern Tanzania |
title_short | Fine-scale spatial and temporal heterogeneities in insecticide resistance profiles of the malaria vector,
Anopheles arabiensis in rural south-eastern Tanzania |
title_sort | fine-scale spatial and temporal heterogeneities in insecticide resistance profiles of the malaria vector,
anopheles arabiensis in rural south-eastern tanzania |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5782413/ https://www.ncbi.nlm.nih.gov/pubmed/29417094 http://dx.doi.org/10.12688/wellcomeopenres.12617.1 |
work_keys_str_mv | AT matowonancys finescalespatialandtemporalheterogeneitiesininsecticideresistanceprofilesofthemalariavectoranophelesarabiensisinruralsoutheasterntanzania AT munhengagivemore finescalespatialandtemporalheterogeneitiesininsecticideresistanceprofilesofthemalariavectoranophelesarabiensisinruralsoutheasterntanzania AT tannermarcel finescalespatialandtemporalheterogeneitiesininsecticideresistanceprofilesofthemalariavectoranophelesarabiensisinruralsoutheasterntanzania AT coetzeemaureen finescalespatialandtemporalheterogeneitiesininsecticideresistanceprofilesofthemalariavectoranophelesarabiensisinruralsoutheasterntanzania AT feringawimf finescalespatialandtemporalheterogeneitiesininsecticideresistanceprofilesofthemalariavectoranophelesarabiensisinruralsoutheasterntanzania AT ngowohalfans finescalespatialandtemporalheterogeneitiesininsecticideresistanceprofilesofthemalariavectoranophelesarabiensisinruralsoutheasterntanzania AT koekemoerlizettel finescalespatialandtemporalheterogeneitiesininsecticideresistanceprofilesofthemalariavectoranophelesarabiensisinruralsoutheasterntanzania AT okumufredroso finescalespatialandtemporalheterogeneitiesininsecticideresistanceprofilesofthemalariavectoranophelesarabiensisinruralsoutheasterntanzania |