Cargando…
Single Plasmonic Structure Enhanced Dual-band Room Temperature Infrared Photodetection
Dual-band photodetection in mid- and near-wave infrared spectral bands is of scientific interest and technological importance. Most of the state-of-the-art mid-infrared photodetectors normally operate at low temperature and/or suffer from toxicity and high cost due to limitations of material propert...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5784088/ https://www.ncbi.nlm.nih.gov/pubmed/29367616 http://dx.doi.org/10.1038/s41598-018-20028-6 |
Sumario: | Dual-band photodetection in mid- and near-wave infrared spectral bands is of scientific interest and technological importance. Most of the state-of-the-art mid-infrared photodetectors normally operate at low temperature and/or suffer from toxicity and high cost due to limitations of material properties and device structures. The capability of surface plasmons in confining electromagnetic waves into extremely small volume provides an opportunity for improving the performance for room temperature operation. Here, we report an n-InAsSb/n-GaSb heterostructure photodiode integrated with plasmonic two-dimensional subwavelength hole array (2DSHA) for room temperature two band photodetection. We demonstrate that with a properly designed 2DSHA, room temperature detectivities of the heterostructure device can be enhanced to ~1.4 × 10(9) Jones and ~1.5 × 10(11) Jones for the two bands peaked at 3.4 μm and 1.7 μm, respectively. In addition, we study the photocurrent enhancement in both photoconductor and heterojunction modes in the same integrated structure. The demonstration of single 2DSHA enhanced heterojunction photodiode brings a step closer to high sensitivity room temperature devices and systems which require multiband absorption. |
---|