Cargando…

Rapidity gap survival in enhanced Pomeron scheme

We apply the phenomenological Reggeon field theory framework to investigate rapidity gap survival (RGS) probability for diffractive dijet production in proton–proton collisions. In particular, we study in some detail rapidity gap suppression due to elastic rescatterings of intermediate partons in th...

Descripción completa

Detalles Bibliográficos
Autores principales: Ostapchenko, Sergey, Bleicher, Marcus
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer Berlin Heidelberg 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5784123/
https://www.ncbi.nlm.nih.gov/pubmed/29398956
http://dx.doi.org/10.1140/epjc/s10052-018-5564-z
Descripción
Sumario:We apply the phenomenological Reggeon field theory framework to investigate rapidity gap survival (RGS) probability for diffractive dijet production in proton–proton collisions. In particular, we study in some detail rapidity gap suppression due to elastic rescatterings of intermediate partons in the underlying parton cascades, described by enhanced (Pomeron–Pomeron interaction) diagrams. We demonstrate that such contributions play a subdominant role, compared to the usual, so-called “eikonal”, rapidity gap suppression due to elastic rescatterings of constituent partons of the colliding protons. On the other hand, the overall RGS factor proves to be sensitive to color fluctuations in the proton. Hence, experimental data on diffractive dijet production can be used to constrain the respective model approaches.