Cargando…

Line-Enhanced Deformable Registration of Pulmonary Computed Tomography Images Before and After Radiation Therapy With Radiation-Induced Fibrosis

PURPOSE: The deformable registration of pulmonary computed tomography images before and after radiation therapy is challenging due to anatomic changes from radiation fibrosis. We hypothesize that a line-enhanced registration algorithm can reduce landmark error over the entire lung, including the irr...

Descripción completa

Detalles Bibliográficos
Autores principales: King, Martin, Sensakovic, William F., Maxim, Peter, Diehn, Maximilian, Loo, Billy W., Xing, Lei
Formato: Online Artículo Texto
Lenguaje:English
Publicado: SAGE Publications 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5784562/
https://www.ncbi.nlm.nih.gov/pubmed/29343206
http://dx.doi.org/10.1177/1533034617749419
_version_ 1783295468164349952
author King, Martin
Sensakovic, William F.
Maxim, Peter
Diehn, Maximilian
Loo, Billy W.
Xing, Lei
author_facet King, Martin
Sensakovic, William F.
Maxim, Peter
Diehn, Maximilian
Loo, Billy W.
Xing, Lei
author_sort King, Martin
collection PubMed
description PURPOSE: The deformable registration of pulmonary computed tomography images before and after radiation therapy is challenging due to anatomic changes from radiation fibrosis. We hypothesize that a line-enhanced registration algorithm can reduce landmark error over the entire lung, including the irradiated regions, when compared to an intensity-based deformable registration algorithm. MATERIALS: Two intensity-based B-spline deformable registration algorithms of pre-radiation therapy and post-radiation therapy images were compared. The first was a control intensity–based algorithm that utilized computed tomography images without modification. The second was a line enhancement algorithm that incorporated a Hessian-based line enhancement filter prior to deformable image registration. Registrations were evaluated based on the landmark error between user-identified landmark pairs and the overlap ratio. RESULTS: Twenty-one patients with pre-radiation therapy and post-radiation therapy scans were included. The median time interval between scans was 1.2 years (range: 0.3-3.3 years). Median landmark errors for the line enhancement algorithm were significantly lower than those for the control algorithm over the entire lung (1.67 vs 1.83 mm; P < .01), as well as within the 0 to 5 Gy (1.40 vs 1.57; P < .01) and >5 Gy (2.25 vs 3.31; P < .01) dose intervals. The median lung mask overlap ratio for the line enhancement algorithm (96.2%) was greater than that for the control algorithm (95.8%; P < .01). Landmark error within the >5 Gy dose interval demonstrated a significant inverse relationship with post-radiation therapy fibrosis enhancement after line enhancement filtration (Pearson correlation coefficient = −0.48; P = .03). CONCLUSION: The line enhancement registration algorithm is a promising method for registering images before and after radiation therapy.
format Online
Article
Text
id pubmed-5784562
institution National Center for Biotechnology Information
language English
publishDate 2018
publisher SAGE Publications
record_format MEDLINE/PubMed
spelling pubmed-57845622018-01-30 Line-Enhanced Deformable Registration of Pulmonary Computed Tomography Images Before and After Radiation Therapy With Radiation-Induced Fibrosis King, Martin Sensakovic, William F. Maxim, Peter Diehn, Maximilian Loo, Billy W. Xing, Lei Technol Cancer Res Treat Original Article PURPOSE: The deformable registration of pulmonary computed tomography images before and after radiation therapy is challenging due to anatomic changes from radiation fibrosis. We hypothesize that a line-enhanced registration algorithm can reduce landmark error over the entire lung, including the irradiated regions, when compared to an intensity-based deformable registration algorithm. MATERIALS: Two intensity-based B-spline deformable registration algorithms of pre-radiation therapy and post-radiation therapy images were compared. The first was a control intensity–based algorithm that utilized computed tomography images without modification. The second was a line enhancement algorithm that incorporated a Hessian-based line enhancement filter prior to deformable image registration. Registrations were evaluated based on the landmark error between user-identified landmark pairs and the overlap ratio. RESULTS: Twenty-one patients with pre-radiation therapy and post-radiation therapy scans were included. The median time interval between scans was 1.2 years (range: 0.3-3.3 years). Median landmark errors for the line enhancement algorithm were significantly lower than those for the control algorithm over the entire lung (1.67 vs 1.83 mm; P < .01), as well as within the 0 to 5 Gy (1.40 vs 1.57; P < .01) and >5 Gy (2.25 vs 3.31; P < .01) dose intervals. The median lung mask overlap ratio for the line enhancement algorithm (96.2%) was greater than that for the control algorithm (95.8%; P < .01). Landmark error within the >5 Gy dose interval demonstrated a significant inverse relationship with post-radiation therapy fibrosis enhancement after line enhancement filtration (Pearson correlation coefficient = −0.48; P = .03). CONCLUSION: The line enhancement registration algorithm is a promising method for registering images before and after radiation therapy. SAGE Publications 2018-01-17 /pmc/articles/PMC5784562/ /pubmed/29343206 http://dx.doi.org/10.1177/1533034617749419 Text en © The Author(s) 2018 http://creativecommons.org/licenses/by-nc/4.0/ This article is distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 License (http://www.creativecommons.org/licenses/by-nc/4.0/) which permits non-commercial use, reproduction and distribution of the work without further permission provided the original work is attributed as specified on the SAGE and Open Access pages (https://us.sagepub.com/en-us/nam/open-access-at-sage).
spellingShingle Original Article
King, Martin
Sensakovic, William F.
Maxim, Peter
Diehn, Maximilian
Loo, Billy W.
Xing, Lei
Line-Enhanced Deformable Registration of Pulmonary Computed Tomography Images Before and After Radiation Therapy With Radiation-Induced Fibrosis
title Line-Enhanced Deformable Registration of Pulmonary Computed Tomography Images Before and After Radiation Therapy With Radiation-Induced Fibrosis
title_full Line-Enhanced Deformable Registration of Pulmonary Computed Tomography Images Before and After Radiation Therapy With Radiation-Induced Fibrosis
title_fullStr Line-Enhanced Deformable Registration of Pulmonary Computed Tomography Images Before and After Radiation Therapy With Radiation-Induced Fibrosis
title_full_unstemmed Line-Enhanced Deformable Registration of Pulmonary Computed Tomography Images Before and After Radiation Therapy With Radiation-Induced Fibrosis
title_short Line-Enhanced Deformable Registration of Pulmonary Computed Tomography Images Before and After Radiation Therapy With Radiation-Induced Fibrosis
title_sort line-enhanced deformable registration of pulmonary computed tomography images before and after radiation therapy with radiation-induced fibrosis
topic Original Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5784562/
https://www.ncbi.nlm.nih.gov/pubmed/29343206
http://dx.doi.org/10.1177/1533034617749419
work_keys_str_mv AT kingmartin lineenhanceddeformableregistrationofpulmonarycomputedtomographyimagesbeforeandafterradiationtherapywithradiationinducedfibrosis
AT sensakovicwilliamf lineenhanceddeformableregistrationofpulmonarycomputedtomographyimagesbeforeandafterradiationtherapywithradiationinducedfibrosis
AT maximpeter lineenhanceddeformableregistrationofpulmonarycomputedtomographyimagesbeforeandafterradiationtherapywithradiationinducedfibrosis
AT diehnmaximilian lineenhanceddeformableregistrationofpulmonarycomputedtomographyimagesbeforeandafterradiationtherapywithradiationinducedfibrosis
AT loobillyw lineenhanceddeformableregistrationofpulmonarycomputedtomographyimagesbeforeandafterradiationtherapywithradiationinducedfibrosis
AT xinglei lineenhanceddeformableregistrationofpulmonarycomputedtomographyimagesbeforeandafterradiationtherapywithradiationinducedfibrosis