Cargando…
Knockdown of Annexin A1 Enhances Radioresistance and Inhibits Apoptosis in Nasopharyngeal Carcinoma
Radiotherapy is the primary treatment for nasopharyngeal carcinoma while radioresistance can hinder efficient treatment. To explore the role of annexin A1 and its potential mechanisms in radioresistance of nasopharyngeal carcinoma, human nasopharyngeal carcinoma cell line CNE2-sh annexin A1 (knockdo...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
SAGE Publications
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5784564/ https://www.ncbi.nlm.nih.gov/pubmed/29357787 http://dx.doi.org/10.1177/1533034617750309 |
_version_ | 1783295468661374976 |
---|---|
author | Liao, Li Yan, Wen-Jing Tian, Chun-Mei Li, Mao-Yu Tian, Yong-Quan Zeng, Gu-Qing |
author_facet | Liao, Li Yan, Wen-Jing Tian, Chun-Mei Li, Mao-Yu Tian, Yong-Quan Zeng, Gu-Qing |
author_sort | Liao, Li |
collection | PubMed |
description | Radiotherapy is the primary treatment for nasopharyngeal carcinoma while radioresistance can hinder efficient treatment. To explore the role of annexin A1 and its potential mechanisms in radioresistance of nasopharyngeal carcinoma, human nasopharyngeal carcinoma cell line CNE2-sh annexin A1 (knockdown of annexin A1) and the control cell line CNE2-pLKO.1 were constituted and CNE2-sh annexin A1 xenograft mouse model was generated. The effect of annexin A1 knockdown on the growth of xenograft tumor after irradiation and radiation-induced DNA damage and repair was analyzed. The results of immunohistochemistry assays and Western blotting showed that the level of annexin A1 was significantly downregulated in the radioresistant nasopharyngeal carcinoma tissues or cell line compared to the radiosensitive nasopharyngeal carcinoma tissues or cell line. Knockdown of annexin A1 significantly promoted CNE2-sh annexin A1 xenograft tumor growth compared to the control groups after irradiation. Moreover, the terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling assays revealed that knockdown of annexin A1 significantly inhibited apoptosis in vivo compared to the control groups. We assessed the intracellular reactive oxygen species levels and the extent of radiation-induced DNA damage and repair using reactive oxygen species assay, comet assays, and immunohistochemistry assay. The results showed that knockdown of annexin A1 remarkedly reduced the intracellular reactive oxygen species levels, level of DNA double-strand breaks, and the phosphorylation level of H2AX and increased the accumulation of DNA-dependent protein kinase in nasopharyngeal carcinoma cells after irradiation. The findings suggest that knockdown of annexin A1 inhibits DNA damage via decreasing the generation of intracellular reactive oxygen species and the formation of γ-H2AX and promotes DNA repair via increasing DNA-dependent protein kinase activity and therefore improves the radioresistance in nasopharyngeal carcinoma cells. Together, our findings suggest that knockdown of annexin A1 promotes radioresistance in nasopharyngeal carcinoma and provides insights into therapeutic targets for nasopharyngeal carcinoma radiotherapy. |
format | Online Article Text |
id | pubmed-5784564 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | SAGE Publications |
record_format | MEDLINE/PubMed |
spelling | pubmed-57845642018-01-30 Knockdown of Annexin A1 Enhances Radioresistance and Inhibits Apoptosis in Nasopharyngeal Carcinoma Liao, Li Yan, Wen-Jing Tian, Chun-Mei Li, Mao-Yu Tian, Yong-Quan Zeng, Gu-Qing Technol Cancer Res Treat Original Article Radiotherapy is the primary treatment for nasopharyngeal carcinoma while radioresistance can hinder efficient treatment. To explore the role of annexin A1 and its potential mechanisms in radioresistance of nasopharyngeal carcinoma, human nasopharyngeal carcinoma cell line CNE2-sh annexin A1 (knockdown of annexin A1) and the control cell line CNE2-pLKO.1 were constituted and CNE2-sh annexin A1 xenograft mouse model was generated. The effect of annexin A1 knockdown on the growth of xenograft tumor after irradiation and radiation-induced DNA damage and repair was analyzed. The results of immunohistochemistry assays and Western blotting showed that the level of annexin A1 was significantly downregulated in the radioresistant nasopharyngeal carcinoma tissues or cell line compared to the radiosensitive nasopharyngeal carcinoma tissues or cell line. Knockdown of annexin A1 significantly promoted CNE2-sh annexin A1 xenograft tumor growth compared to the control groups after irradiation. Moreover, the terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling assays revealed that knockdown of annexin A1 significantly inhibited apoptosis in vivo compared to the control groups. We assessed the intracellular reactive oxygen species levels and the extent of radiation-induced DNA damage and repair using reactive oxygen species assay, comet assays, and immunohistochemistry assay. The results showed that knockdown of annexin A1 remarkedly reduced the intracellular reactive oxygen species levels, level of DNA double-strand breaks, and the phosphorylation level of H2AX and increased the accumulation of DNA-dependent protein kinase in nasopharyngeal carcinoma cells after irradiation. The findings suggest that knockdown of annexin A1 inhibits DNA damage via decreasing the generation of intracellular reactive oxygen species and the formation of γ-H2AX and promotes DNA repair via increasing DNA-dependent protein kinase activity and therefore improves the radioresistance in nasopharyngeal carcinoma cells. Together, our findings suggest that knockdown of annexin A1 promotes radioresistance in nasopharyngeal carcinoma and provides insights into therapeutic targets for nasopharyngeal carcinoma radiotherapy. SAGE Publications 2018-01-22 /pmc/articles/PMC5784564/ /pubmed/29357787 http://dx.doi.org/10.1177/1533034617750309 Text en © The Author(s) 2018 http://creativecommons.org/licenses/by-nc/4.0/ This article is distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 License (http://www.creativecommons.org/licenses/by-nc/4.0/) which permits non-commercial use, reproduction and distribution of the work without further permission provided the original work is attributed as specified on the SAGE and Open Access pages (https://us.sagepub.com/en-us/nam/open-access-at-sage). |
spellingShingle | Original Article Liao, Li Yan, Wen-Jing Tian, Chun-Mei Li, Mao-Yu Tian, Yong-Quan Zeng, Gu-Qing Knockdown of Annexin A1 Enhances Radioresistance and Inhibits Apoptosis in Nasopharyngeal Carcinoma |
title | Knockdown of Annexin A1 Enhances Radioresistance and Inhibits Apoptosis in Nasopharyngeal Carcinoma |
title_full | Knockdown of Annexin A1 Enhances Radioresistance and Inhibits Apoptosis in Nasopharyngeal Carcinoma |
title_fullStr | Knockdown of Annexin A1 Enhances Radioresistance and Inhibits Apoptosis in Nasopharyngeal Carcinoma |
title_full_unstemmed | Knockdown of Annexin A1 Enhances Radioresistance and Inhibits Apoptosis in Nasopharyngeal Carcinoma |
title_short | Knockdown of Annexin A1 Enhances Radioresistance and Inhibits Apoptosis in Nasopharyngeal Carcinoma |
title_sort | knockdown of annexin a1 enhances radioresistance and inhibits apoptosis in nasopharyngeal carcinoma |
topic | Original Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5784564/ https://www.ncbi.nlm.nih.gov/pubmed/29357787 http://dx.doi.org/10.1177/1533034617750309 |
work_keys_str_mv | AT liaoli knockdownofannexina1enhancesradioresistanceandinhibitsapoptosisinnasopharyngealcarcinoma AT yanwenjing knockdownofannexina1enhancesradioresistanceandinhibitsapoptosisinnasopharyngealcarcinoma AT tianchunmei knockdownofannexina1enhancesradioresistanceandinhibitsapoptosisinnasopharyngealcarcinoma AT limaoyu knockdownofannexina1enhancesradioresistanceandinhibitsapoptosisinnasopharyngealcarcinoma AT tianyongquan knockdownofannexina1enhancesradioresistanceandinhibitsapoptosisinnasopharyngealcarcinoma AT zengguqing knockdownofannexina1enhancesradioresistanceandinhibitsapoptosisinnasopharyngealcarcinoma |