Cargando…
Response to ‘Increasing value and reducing waste in data extraction for systematic reviews: tracking data in data extraction forms’
This is a response to a Letter. Data abstraction is a time-consuming and error-prone systematic review task. Shokraneh and Adams categorize available techniques for tracking data during data abstraction into three methods: simple annotation, descriptive addressing, and Cartesian coordinate system. W...
Autores principales: | Jap, Jens, Saldanha, Ian J., Smith, Bryant T., Lau, Joseph, Li, Tianjing |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5784663/ https://www.ncbi.nlm.nih.gov/pubmed/29368631 http://dx.doi.org/10.1186/s13643-018-0677-x |
Ejemplares similares
-
Increasing value and reducing waste in data extraction for systematic reviews: tracking data in data extraction forms
por: Shokraneh, Farhad, et al.
Publicado: (2017) -
The Systematic Review Data Repository (SRDR): descriptive characteristics of publicly available data and opportunities for research
por: Saldanha, Ian J., et al.
Publicado: (2019) -
Evaluating Data Abstraction Assistant, a novel software application for data abstraction during systematic reviews: protocol for a randomized controlled trial
por: Saldanha, Ian J., et al.
Publicado: (2016) -
Frequency of data extraction errors and methods to increase data extraction quality: a methodological review
por: Mathes, Tim, et al.
Publicado: (2017) -
Normal form via tracking or beam data
por: Bartolini, R, et al.
Publicado: (1997)