Cargando…
Identification of transformer fault based on dissolved gas analysis using hybrid support vector machine-modified evolutionary particle swarm optimisation
Early detection of power transformer fault is important because it can reduce the maintenance cost of the transformer and it can ensure continuous electricity supply in power systems. Dissolved Gas Analysis (DGA) technique is commonly used to identify oil-filled power transformer fault type but util...
Autores principales: | Illias, Hazlee Azil, Zhao Liang, Wee |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5784944/ https://www.ncbi.nlm.nih.gov/pubmed/29370230 http://dx.doi.org/10.1371/journal.pone.0191366 |
Ejemplares similares
-
Transformer Incipient Fault Prediction Using Combined Artificial Neural Network and Various Particle Swarm Optimisation Techniques
por: Illias, Hazlee Azil, et al.
Publicado: (2015) -
Classification of Partial Discharge Measured under Different Levels of Noise Contamination
por: Jee Keen Raymond, Wong, et al.
Publicado: (2017) -
Classification of abnormal location in medium voltage switchgears using hybrid gravitational search algorithm-artificial intelligence
por: Illias, Hazlee Azil, et al.
Publicado: (2021) -
Nonisocyanate Poly(Hydroxyl Urethane)-Based Green
Polymer Hybrid Coating Systems: Tailoring of Biomacromolecular Compound
Architecture Using APTMS-ZnO/TEMPO-Oxidized Cellulose Nanoparticles
por: Haniffa, Mhd. Abd. Cader Mhd., et al.
Publicado: (2020) -
Partial Discharge in Nanofluid Insulation Material with Conductive and Semiconductive Nanoparticles
por: Makmud, Mohamad Zul Hilmey, et al.
Publicado: (2019)