Cargando…
Learning a Local-Variable Model of Aromatic and Conjugated Systems
[Image: see text] A collection of new approaches to building and training neural networks, collectively referred to as deep learning, are attracting attention in theoretical chemistry. Several groups aim to replace computationally expensive ab initio quantum mechanics calculations with learned estim...
Autores principales: | Matlock, Matthew K., Dang, Na Le, Swamidass, S. Joshua |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2018
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5785769/ https://www.ncbi.nlm.nih.gov/pubmed/29392176 http://dx.doi.org/10.1021/acscentsci.7b00405 |
Ejemplares similares
-
Securely Measuring the Overlap between Private Datasets with Cryptosets
por: Swamidass, S. Joshua, et al.
Publicado: (2015) -
Modeling Reactivity to Biological Macromolecules with
a Deep Multitask Network
por: Hughes, Tyler B., et al.
Publicado: (2016) -
A unified superatomic-molecule theory for local aromaticity in π-conjugated systems
por: Li, Dan, et al.
Publicado: (2022) -
Deep learning quantification of percent steatosis in donor liver biopsy frozen sections
por: Sun, Lulu, et al.
Publicado: (2020) -
Modeling Epoxidation of Drug-like Molecules with a
Deep Machine Learning Network
por: Hughes, Tyler B., et al.
Publicado: (2015)