Cargando…
Generating Focused Molecule Libraries for Drug Discovery with Recurrent Neural Networks
[Image: see text] In de novo drug design, computational strategies are used to generate novel molecules with good affinity to the desired biological target. In this work, we show that recurrent neural networks can be trained as generative models for molecular structures, similar to statistical langu...
Autores principales: | Segler, Marwin H. S., Kogej, Thierry, Tyrchan, Christian, Waller, Mark P. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2017
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5785775/ https://www.ncbi.nlm.nih.gov/pubmed/29392184 http://dx.doi.org/10.1021/acscentsci.7b00512 |
Ejemplares similares
-
Siamese Recurrent Neural Network with a Self-Attention
Mechanism for Bioactivity Prediction
por: Fernández-Llaneza, Daniel, et al.
Publicado: (2021) -
Discovery of novel chemical reactions by deep generative recurrent neural network
por: Bort, William, et al.
Publicado: (2021) -
Second-Generation DNA-Templated Macrocycle Libraries for the Discovery of Bioactive Small Molecules
por: Usanov, Dmitry L., et al.
Publicado: (2018) -
QBMG: quasi-biogenic molecule generator with deep recurrent neural network
por: Zheng, Shuangjia, et al.
Publicado: (2019) -
Fragment‐based drug discovery—the importance of high‐quality molecule libraries
por: Bon, Marta, et al.
Publicado: (2022)