Cargando…
AmPEP: Sequence-based prediction of antimicrobial peptides using distribution patterns of amino acid properties and random forest
Antimicrobial peptides (AMPs) are promising candidates in the fight against multidrug-resistant pathogens owing to AMPs’ broad range of activities and low toxicity. Nonetheless, identification of AMPs through wet-lab experiments is still expensive and time consuming. Here, we propose an accurate com...
Autores principales: | Bhadra, Pratiti, Yan, Jielu, Li, Jinyan, Fong, Simon, Siu, Shirley W. I. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5785966/ https://www.ncbi.nlm.nih.gov/pubmed/29374199 http://dx.doi.org/10.1038/s41598-018-19752-w |
Ejemplares similares
-
Deep-AmPEP30: Improve Short Antimicrobial Peptides Prediction with Deep Learning
por: Yan, Jielu, et al.
Publicado: (2020) -
Recent Progress in the Discovery and Design of Antimicrobial Peptides Using Traditional Machine Learning and Deep Learning
por: Yan, Jielu, et al.
Publicado: (2022) -
A deep learning method for predicting the minimum inhibitory concentration of antimicrobial peptides against Escherichia coli using Multi-Branch-CNN and Attention
por: Yan, Jielu, et al.
Publicado: (2023) -
Molecular Modeling of Signal Peptide Recognition by Eukaryotic Sec Complexes
por: Bhadra, Pratiti, et al.
Publicado: (2021) -
TNF Receptor Type II as an Emerging Drug Target for the Treatment of Cancer, Autoimmune Diseases, and Graft-Versus-Host Disease: Current Perspectives and In Silico Search for Small Molecule Binders
por: Shaikh, Faraz, et al.
Publicado: (2018)