Cargando…
Systematic identification of latent disease-gene associations from PubMed articles
Recent scientific advances have accumulated a tremendous amount of biomedical knowledge providing novel insights into the relationship between molecular and cellular processes and diseases. Literature mining is one of the commonly used methods to retrieve and extract information from scientific publ...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5786305/ https://www.ncbi.nlm.nih.gov/pubmed/29373609 http://dx.doi.org/10.1371/journal.pone.0191568 |
_version_ | 1783295765307719680 |
---|---|
author | Zhang, Yuji Shen, Feichen Mojarad, Majid Rastegar Li, Dingcheng Liu, Sijia Tao, Cui Yu, Yue Liu, Hongfang |
author_facet | Zhang, Yuji Shen, Feichen Mojarad, Majid Rastegar Li, Dingcheng Liu, Sijia Tao, Cui Yu, Yue Liu, Hongfang |
author_sort | Zhang, Yuji |
collection | PubMed |
description | Recent scientific advances have accumulated a tremendous amount of biomedical knowledge providing novel insights into the relationship between molecular and cellular processes and diseases. Literature mining is one of the commonly used methods to retrieve and extract information from scientific publications for understanding these associations. However, due to large data volume and complicated associations with noises, the interpretability of such association data for semantic knowledge discovery is challenging. In this study, we describe an integrative computational framework aiming to expedite the discovery of latent disease mechanisms by dissecting 146,245 disease-gene associations from over 25 million of PubMed indexed articles. We take advantage of both Latent Dirichlet Allocation (LDA) modeling and network-based analysis for their capabilities of detecting latent associations and reducing noises for large volume data respectively. Our results demonstrate that (1) the LDA-based modeling is able to group similar diseases into disease topics; (2) the disease-specific association networks follow the scale-free network property; (3) certain subnetwork patterns were enriched in the disease-specific association networks; and (4) genes were enriched in topic-specific biological processes. Our approach offers promising opportunities for latent disease-gene knowledge discovery in biomedical research. |
format | Online Article Text |
id | pubmed-5786305 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-57863052018-02-09 Systematic identification of latent disease-gene associations from PubMed articles Zhang, Yuji Shen, Feichen Mojarad, Majid Rastegar Li, Dingcheng Liu, Sijia Tao, Cui Yu, Yue Liu, Hongfang PLoS One Research Article Recent scientific advances have accumulated a tremendous amount of biomedical knowledge providing novel insights into the relationship between molecular and cellular processes and diseases. Literature mining is one of the commonly used methods to retrieve and extract information from scientific publications for understanding these associations. However, due to large data volume and complicated associations with noises, the interpretability of such association data for semantic knowledge discovery is challenging. In this study, we describe an integrative computational framework aiming to expedite the discovery of latent disease mechanisms by dissecting 146,245 disease-gene associations from over 25 million of PubMed indexed articles. We take advantage of both Latent Dirichlet Allocation (LDA) modeling and network-based analysis for their capabilities of detecting latent associations and reducing noises for large volume data respectively. Our results demonstrate that (1) the LDA-based modeling is able to group similar diseases into disease topics; (2) the disease-specific association networks follow the scale-free network property; (3) certain subnetwork patterns were enriched in the disease-specific association networks; and (4) genes were enriched in topic-specific biological processes. Our approach offers promising opportunities for latent disease-gene knowledge discovery in biomedical research. Public Library of Science 2018-01-26 /pmc/articles/PMC5786305/ /pubmed/29373609 http://dx.doi.org/10.1371/journal.pone.0191568 Text en © 2018 Zhang et al http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Article Zhang, Yuji Shen, Feichen Mojarad, Majid Rastegar Li, Dingcheng Liu, Sijia Tao, Cui Yu, Yue Liu, Hongfang Systematic identification of latent disease-gene associations from PubMed articles |
title | Systematic identification of latent disease-gene associations from PubMed articles |
title_full | Systematic identification of latent disease-gene associations from PubMed articles |
title_fullStr | Systematic identification of latent disease-gene associations from PubMed articles |
title_full_unstemmed | Systematic identification of latent disease-gene associations from PubMed articles |
title_short | Systematic identification of latent disease-gene associations from PubMed articles |
title_sort | systematic identification of latent disease-gene associations from pubmed articles |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5786305/ https://www.ncbi.nlm.nih.gov/pubmed/29373609 http://dx.doi.org/10.1371/journal.pone.0191568 |
work_keys_str_mv | AT zhangyuji systematicidentificationoflatentdiseasegeneassociationsfrompubmedarticles AT shenfeichen systematicidentificationoflatentdiseasegeneassociationsfrompubmedarticles AT mojaradmajidrastegar systematicidentificationoflatentdiseasegeneassociationsfrompubmedarticles AT lidingcheng systematicidentificationoflatentdiseasegeneassociationsfrompubmedarticles AT liusijia systematicidentificationoflatentdiseasegeneassociationsfrompubmedarticles AT taocui systematicidentificationoflatentdiseasegeneassociationsfrompubmedarticles AT yuyue systematicidentificationoflatentdiseasegeneassociationsfrompubmedarticles AT liuhongfang systematicidentificationoflatentdiseasegeneassociationsfrompubmedarticles |