Cargando…
Clustering gene expression time series data using an infinite Gaussian process mixture model
Transcriptome-wide time series expression profiling is used to characterize the cellular response to environmental perturbations. The first step to analyzing transcriptional response data is often to cluster genes with similar responses. Here, we present a nonparametric model-based method, Dirichlet...
Autores principales: | McDowell, Ian C., Manandhar, Dinesh, Vockley, Christopher M., Schmid, Amy K., Reddy, Timothy E., Engelhardt, Barbara E. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5786324/ https://www.ncbi.nlm.nih.gov/pubmed/29337990 http://dx.doi.org/10.1371/journal.pcbi.1005896 |
Ejemplares similares
-
Infinite-dimensional Gaussian distributions
por: Rozanov, Yu A
Publicado: (1971) -
Detecting differential growth of microbial populations with Gaussian process regression
por: Tonner, Peter D., et al.
Publicado: (2017) -
Stable non-Gaussian random processes: stochastic models with infinite variance
por: Samoradnitsky, Gennady, et al.
Publicado: (1994) -
Sparse multi-output Gaussian processes for online medical time series prediction
por: Cheng, Li-Fang, et al.
Publicado: (2020) -
Efficient Clustering for Continuous Occupancy Mapping Using a Mixture of Gaussian Processes †
por: Kim, Soohwan, et al.
Publicado: (2022)