Cargando…
Communication between N terminus and loop2 tunes Orai activation
Ca(2+) release-activated Ca(2+) (CRAC) channels constitute the major Ca(2+) entry pathway into the cell. They are fully reconstituted via intermembrane coupling of the Ca(2+)-selective Orai channel and the Ca(2+)-sensing protein STIM1. In addition to the Orai C terminus, the main coupling site for S...
Autores principales: | , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Society for Biochemistry and Molecular Biology
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5787804/ https://www.ncbi.nlm.nih.gov/pubmed/29237733 http://dx.doi.org/10.1074/jbc.M117.812693 |
Sumario: | Ca(2+) release-activated Ca(2+) (CRAC) channels constitute the major Ca(2+) entry pathway into the cell. They are fully reconstituted via intermembrane coupling of the Ca(2+)-selective Orai channel and the Ca(2+)-sensing protein STIM1. In addition to the Orai C terminus, the main coupling site for STIM1, the Orai N terminus is indispensable for Orai channel gating. Although the extended transmembrane Orai N-terminal region (Orai1 amino acids 73–91; Orai3 amino acids 48–65) is fully conserved in the Orai1 and Orai3 isoforms, Orai3 tolerates larger N-terminal truncations than Orai1 in retaining store-operated activation. In an attempt to uncover the reason for these isoform-specific structural requirements, we analyzed a series of Orai mutants and chimeras. We discovered that it was not the N termini, but the loop2 regions connecting TM2 and TM3 of Orai1 and Orai3 that featured distinct properties, which explained the different, isoform-specific behavior of Orai N-truncation mutants. Atomic force microscopy studies and MD simulations suggested that the remaining N-terminal portion in the non-functional Orai1 N-truncation mutants formed new, inhibitory interactions with the Orai1-loop2 regions, but not with Orai3-loop2. Such a loop2 swap restored activation of the N-truncation Orai1 mutants. To mimic interactions between the N terminus and loop2 in full-length Orai1 channels, we induced close proximity of the N terminus and loop2 via cysteine cross-linking, which actually caused significant inhibition of STIM1-mediated Orai currents. In aggregate, maintenance of Orai activation required not only the conserved N-terminal region but also permissive communication of the Orai N terminus and loop2 in an isoform-specific manner. |
---|