Cargando…

Single‐base methylome analysis reveals dynamic epigenomic differences associated with water deficit in apple

Cytosine methylation is an essential feature of epigenetic regulation and is involved in various biological processes. Although cytosine methylation has been analysed at the genomic scale for several plant species, there is a general lack of understanding of the dynamics of global and genic DNA meth...

Descripción completa

Detalles Bibliográficos
Autores principales: Xu, Jidi, Zhou, Shasha, Gong, Xiaoqing, Song, Yi, van Nocker, Steve, Ma, Fengwang, Guan, Qingmei
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5787839/
https://www.ncbi.nlm.nih.gov/pubmed/28796917
http://dx.doi.org/10.1111/pbi.12820
Descripción
Sumario:Cytosine methylation is an essential feature of epigenetic regulation and is involved in various biological processes. Although cytosine methylation has been analysed at the genomic scale for several plant species, there is a general lack of understanding of the dynamics of global and genic DNA methylation in plants growing in environments challenged with biotic and abiotic stresses. In this study, we mapped cytosine methylation at single‐base resolution in the genome of commercial apple (Malus x domestica), and analysed changes in methylation patterns associated with water deficit in representative drought‐sensitive and drought‐tolerant cultivars. We found that the apple genome exhibits ~54%, ~38% and ~8.5% methylation at CG, CHG and CHH sequence contexts, respectively. We additionally documented changes in gene expression associated with water deficit in an attempt to link methylation and gene expression changes. Global methylation and transcription analysis revealed that promoter‐unmethylated genes showed higher expression levels than promoter‐methylated genes. Gene body methylation appears to be positively correlated with gene expression. Water deficit stress was associated with changes in methylation at a multitude of genes, including those encoding transcription factors (TFs) and transposable elements (TEs). These results present a methylome map of the apple genome and reveal widespread DNA methylation alterations in response to water deficit stress. These data will be helpful for understanding potential linkages between DNA methylation and gene expression in plants growing in natural environments and challenged with abiotic and biotic stresses.