Cargando…
SSCMDA: spy and super cluster strategy for MiRNA-disease association prediction
In the biological field, the identification of the associations between microRNAs (miRNAs) and diseases has been paid increasing attention as an extremely meaningful study for the clinical medicine. However, it is expensive and time-consuming to confirm miRNA-disease associations by experimental met...
Autores principales: | Zhao, Qi, Xie, Di, Liu, Hongsheng, Wang, Fan, Yan, Gui-Ying, Chen, Xing |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Impact Journals LLC
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5788602/ https://www.ncbi.nlm.nih.gov/pubmed/29416734 http://dx.doi.org/10.18632/oncotarget.22812 |
Ejemplares similares
-
Super Spy variants implicate flexibility in chaperone action
por: Quan, Shu, et al.
Publicado: (2014) -
EGBMMDA: Extreme Gradient Boosting Machine for MiRNA-Disease Association prediction
por: Chen, Xing, et al.
Publicado: (2018) -
Regulation of miRNA 219 and miRNA Clusters 338 and 17-92 in Oligodendrocytes
por: de Faria Jr., Omar, et al.
Publicado: (2012) -
MCMDA: Matrix completion for MiRNA-disease association prediction
por: Li, Jian-Qiang, et al.
Publicado: (2017) -
GIMDA: Graphlet interaction‐based MiRNA‐disease association prediction
por: Chen, Xing, et al.
Publicado: (2017)