Cargando…
microRNA-19a protects osteoblasts from dexamethasone via targeting TSC1
Activation of mTOR complex 1 (mTORC1) could protect human osteoblasts from dexamethasone. Tuberous sclerosis complex 1 (TSC1) is mTORC1 upstream inhibitory protein. We demonstrate here that microRNA-19a (“miR-19a”, -3p) targets the 3' untranslated regions of TSC1 mRNA. Expression of miR-19a dow...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Impact Journals LLC
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5788617/ https://www.ncbi.nlm.nih.gov/pubmed/29416749 http://dx.doi.org/10.18632/oncotarget.23326 |
Sumario: | Activation of mTOR complex 1 (mTORC1) could protect human osteoblasts from dexamethasone. Tuberous sclerosis complex 1 (TSC1) is mTORC1 upstream inhibitory protein. We demonstrate here that microRNA-19a (“miR-19a”, -3p) targets the 3' untranslated regions of TSC1 mRNA. Expression of miR-19a downregulated TSC1 in OB-6 osteoblastic cells and primary human osteoblasts. miR-19a activated mTORC1 and protected human osteoblasts from dexamethasone. mTORC1 inhibition, by RAD001 or Raptor shRNA, almost completely abolished miR-19a-induced osteoblast cytoprotection against dexamethasone. Knockdown of TSC1 by targeted shRNA similarly induced mTORC1 activation and protected osteoblasts. Moreover, miR-19a activated mTORC1-dependent NF-E2-related factor 2 (Nrf2) signaling and inhibited dexamethasone-induced reactive oxygen species production in osteoblasts. Together, miR-19a protects human osteoblasts from dexamethasone possibly via targeting TSC1-mTORC1 signaling. |
---|