Cargando…

LncRNA NEAT1 enhances the radio-resistance of cervical cancer via miR-193b-3p/CCND1 axis

LncRNAs have become a hot topic in various cancer-related researches. Radio-resistance is a great threat for cancer therapy. However, how lncRNAs affect the radio-resistance in cervical cancer is masked. As for our paper, it was discovered that NEAT1 was highly expressed in cervical cancer tissues a...

Descripción completa

Detalles Bibliográficos
Autores principales: Han, Dongmei, Wang, Jianfeng, Cheng, Guanghui
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Impact Journals LLC 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5788648/
https://www.ncbi.nlm.nih.gov/pubmed/29416780
http://dx.doi.org/10.18632/oncotarget.23416
Descripción
Sumario:LncRNAs have become a hot topic in various cancer-related researches. Radio-resistance is a great threat for cancer therapy. However, how lncRNAs affect the radio-resistance in cervical cancer is masked. As for our paper, it was discovered that NEAT1 was highly expressed in cervical cancer tissues and non-sensitive tissues as well as radio-resistant cell lines. And the overexpression of NEAT1 accelerated proliferation, while the knockdown of NEAT1 had the opposite result. The effect of NEAT1 on cell proliferation was dependent on the dose of ionizing radiation. And the silence of NEAT1 also caused cell cycle arrest in G0/G1 phase, and triggered more apoptosis, indicating the oncogenic role of NEAT1 in cervical cancer. Next, mechanistic assays affirmed that NEAT1 could function as a ceRNA to regulate cyclin D1 through sponging miR-193b-3p in cervical cancer. Rescue assays were employed to validate that miR-193b-3p and cyclin D1 could inhibit NEAT1-mediated suppressive effect on proliferation, and its stimulative effect on cell cycle arrest and apoptosis. In general, this article disclosed that NEAT1 could facilitate the radio-resistance of cervical cancer via competitively binding miR-193b-3p to up-regulate the expression of cyclin D1.